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General Properties of MHD Equilibria

* Equilibrium
* Plasma Beta
* Pressure and Tension
* Diamagnetic current

 Plasma Diffusion
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plasma magnetohydrodynamic equilibrium

Equilibrium structures (no time dependence, no plasma flow) are important and
often approximately a reasonable assumption for space plasmas during quiet
times.
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Auxiliary Derivation

* Hereshow (V «B)xB=-1VB?+(B-V)B

« Consider the component form of the second term on the right:
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B-V)IB=|B,— +B,— +B.— | B=%|By—— + By—" + B.—— | +%() +2(-
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N & 82 0 1 ~ « The RHS can be neglected in many cases like
p+ — ( B N) B a straight magnetic field or when B varies
e 2m0 @ mo slowly along B itself

The condition

Qi B §

NP amgy , B’

¢ o0 p + —— = constant
J mo\

sum of the thermal pressure and the magnetic pressure

« The ratio between the thermal (kinetic) pressure and the magnetic pressure:

2myp _ 2myankgT
B2  B?

Plasma b b =
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Plasma b

e [3>>1, thermal plasma, plasma pressure forces dominates

* B ~1, warm plasma
* [ <<1, cold plasma, magnetic field force dominates

For example, coronal active regions § <<1
solarwindat 1 AU B ~1
current sheet in the magetotail § >>1
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Example : pressure-balanced plasma column 6 — pinch
So called because currents flow in 6 direction

Take the column to be oo length, uniform: B has only z —
component, j has only 6 component, Vp has only r
component, so we only need force: (j x B), — (Vp), = 0

Ampere (V x B)s = (ioj),

A3

Eliminate j

fp={]

JeB: — or . B: OB . Op = 0
c B _ rik Ho or O1
or z = Hole
o (_B: :
or ( 21 t e ¢
Solution: B2
— + p = const
2o

*@é*ﬁiﬁﬁlﬁﬁfﬂﬁﬁqﬂfﬂ‘

ZEFF SR AR




Nsse

Magnetic Tension

B lines of force

It is know that two wires carrying parallel
currents attract as if the magnetic field lines of
force were under tension

Parallel current elements

Magnetic tension is described by the term
B - V)B =B,-2 (Bii + B)j + BK) +. ..

cx

If the magnetic lines of force are straight and parallel then
B =B,iand B - VB = 0. This term is only important if the
magnetic lines of force are curved.
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To show this, consider the geometric
construction as shown and let
B = B/B|be the unit vector inthe ~ Curvediine
direction of the field. By definition:
B.vB -5
Where | is the coordinate alone the line of force
AB _ B( +A) - B
Al Al
It is clearthat B(7 + A7) — B()) = —Ad8

[+AD

Where # is the normal to the field line, while A7 = rds, therefore,

2 3 - _fh
B.VB = R

So that the magnetic tension is in inversely proportional to the
radius of curvature of the magnetic field line. The lines of force
can be regarded as elastic cords under tension B2/,
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Magnetic Tension

e The magnetic tension, always is a restoring force: if the field
lines have a convex curvature into the upward direction, leading to
a force directed downward. If the curvature is opposite, the force
Is also Is In the opposite direction. Magnetic field lines have a
tendency to shorten. T

5 RS A H
¥ B4 5 Sps sumas



INSe Magnetohydrostatics

e In the study of dynamical systems it is always useful to start

with a study of the simplest solutions. These are usually the
stationary states.

 Many physical processes in plasma systems occur slowly, I.e. on
time-scales which are much longer than the typical time-scale of
the system.

@ No time dependence and no plasma flows

@ More precise: The dynamic terms in MHD are small compared
with static forces (Lorentz-force, plasma pressure gradient)

-Np+J“"B=0
N~ B=myJ
N-B=0
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Magnetic Surface 0=Bx(-Np+J~B)=-BxNp

Pressure is constant on a field-line (in MHD situation)

Consider some arbitrary volume in which (f; g {:’lﬁ
Vp # 0 .Drawn contours ( surface in 3-D) (’ ( %\,ﬁjf_J)
on which p=const. At any point on this N
surface, Vp is perp to the surface. P const comtours
Vi
-BxNp =0

[

Implies B is also perp to the Vp

B lines is in the surface of p = const. In equilibrium isobaric
surface are “magnetic surface”
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Current Surface
0=Jx(-Np+J~B)=-JxNp
JxNp =0

Isobaric Surface are “current surface”. Therefore,
“Magnetic Surfaces™ are “ Current Surfaces”

It Is important to note that the existent of magnetic surface is
guaranteed only in the MHD approximation when 'p # 0.

Taking account of corrections to MHD, we may not have
magnetic surfaces even if Vp + 0
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Nssc- Low-beta equilibria: Force-free plasmas

In the cases the ratio of kinetic to magnetic pressure is small, 3
« 1, and we can approximately ignore p . Such a
equilibrium is called “force free”

-Np+J " B=(0 =) J B=0

Implies J and B are parallel. J=m(r)B

Scalar function

Where p is a scalar, which in principle can be a function of space.
Current flows along field lines, but do not across. Take divergence:

0=NxJ=Nx(m(r)B)=m(r)N«B + (BxN)m(r) = (BxN)m(r)
This means that 4 cannot vary along a magnetic field line. In

general,u can have different values on different field lines, but
It has to be a constant on one field line.
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Nssc- Low-beta equilibria: Force-free plasmas

The simplest case Is to consider u to be constant. — linear
force-free field.

VxB = nuj = uuB
This 1s a somewhat more convenient form because it is linear In
B (for specified u ).

A linear equation can in general be solved by a series expansion.
Since it is still a vector equation rather than a scalar equation,
obtaining a general solution by series expansion is slightly
complicated. Here we shall not discuss this general solution,

but only consider the solution with cylindrical symmetry.
Written in cylindrical coordinates assuming cylindrical
symmetry (i.e. no variation of any quantity in 6 or z directions):
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- dﬁf = [Bs
#L(FBQJ = UB:;

r o dr

Leads to a Bessel function solution:

B: = B{jJﬂ(‘HF)
BQ BDJL(;H')

Where J, and J, are Bessel functions of order 0, 1.
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Diamagnetic Drift

Since a fluid element is composed of many individual particles,
one would expect the fluid to have drifts perpendicular to B if the
Individual guiding centers have such drifts. However, since the
Vp term appears only in the fluid equations, there is a drift
associated with it which the fluid elements have but the particles
do not have.

* Fluid momentum equation:

efu ~\ U - ~
nm-—+(UuxN)u-=an(E+u” B)-N
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« Assuming : Uniform E and B, n and p have a gradient

« To study the motion perpendicular to B the cross product of
the momentum equation with B is taken (neglecting the LHS):

0=gn(E+u”"B)"B-Np“B
that yields 3
_E"B Np“B
B2  gnB?

U=Va

« The first term is the usual ExB drift, as in the particle
description, the second term is called diamagnetic drift
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density gradient. 'n dense ™ ®
plasma
total @) [
current T v
tenuous
plasma
@ Diamagnetic current arise from Lamor motion when there
IS a density gradient.

« The diamagnetic drift does not depend on the mass but
changes sign with the charge: this causes a diamagnetic
current since electrons and ions drift in opposite directions

B”N.p.
BZ

jdia =

W = 2 I
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Neutral sheet current

A typical example of a diamagnetic current is the neutral sheet in
the magnetotail of the Earth, which divides the regions of inward
(in the northern lobe) and outward magnetic fields.

Parameters:

temperature 1-10 keV,

transverse field 1-5 nT,

density 1 cm-3,

thickness 1-2 R,

very high plasma beta,
b =10~100.

E X = E B F A
84 5t snusspmasn
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The Harris model sheet is shown below.

................................................................................................

Bz = Br tanh(z/Lp) %

Here B, is the lobe magnetic | D 5
field, and Lg its variation
scale length.

The boundary of the plasma sheet is
determined by a balance between the
magnetic pressure of the tail lobes and the
Kinetic pressure of the plasma sheet plasma:




high B
low p

low B
high p

« The diamagnetic current j, decreases the magnetic field
Inside the plasma keeping the sum of thermal and magnetic
pressures constant everywhere in the cylinder
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Nsse. _ _
Plasma Diffusion

 The infinite, homogeneous plasmas for the equilibrium
conditions are, of course, highly idealized.

 Plasmas follow density gradients and diffuse trying to fill

lowest density regions: plasma diffusion occur, at different
rates, with and without magnetic fields

 In the case of weakly ionized plasmas the diffusion occurs

mainly because collisions between charged particles and
neutrals
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Collision Primer

« A flux of test particles is colliding with target particles of
density n;

« Target particles offer a cross-sectional area s and are
contained in a slab of area A and thickness dx

 Collisions occur only when a test particle is intercepted by a
target and in that case the test particle will loose all its

momentum
e d A
e — P ® ..: A
0 el ®
o o S
®
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» The number of particles in the slab is nAdx and the fraction
area blocked by the target particles is 2222

= ondx

 |f flux of incident particles is /" the flux emerging from the
slab is 7" *=I(1-ondx).

d—G = -nsG
dx

that has the solution
G =Gy exp(-ns x) =Gy exp(-x/1,)

where the quantity A =1/ngis called the mean free path for
collisions
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 |If uis the velocity of the incident particles, the mean time
between collisions is t=4_,/u and the mean collision
frequency will be v=u /4. =uno

 For incident particles with a velocity distribution the
collision frequency is defined by taking the average of v
over that distribution

e ¢ can also be function of the velocity
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« Consider the basic plasma diffusion process with a scalar
pressure term and collisional plasma (No magnetic field)

eflu ) ~
nmx— + (uxN)u, =gnE - Np - mmu

 For sufficiently slow motion (compared to the collision
time), a steady state Is considered.

0=qnE-Np-mmu
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0=qgnE - Np-mmu

U= i(an - Np)
mm

* Forisothermal plasmas (and subject to the ideal gas
equation of state) it can be written

u :i(an— kgTRIN)= 1 E -
mm m M on
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« The coefficients of E and grad n/n are called mobility and
diffusion coefficient

KeT
— M D — B
myv myv
and are connected by the Einstein relation
_qb
kg T

 Introducing the mobility and the diffusion coefficient the
equation for u becomes

Uu=—-mk - DNE

q n
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« The flux nu of particles can be written then as

« When the particles are neutral (or E=0), the Fick’s law is
found as a special case :

G =nu =-DNn

« Fick’s law describes a random-walk type of diffusion: the
motion along grad n occurs only because there are more
particles in regions with larger n
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Diffusion Equation

» The continuity equation for each species j=I,e can be written

as ﬂnJ
+N t(n;u)=0
Mt
and by using Fick’s law Gj = —Danj
fin; ~
~J+Rx(-D;fin;) =0
Tt
and for uniform diffusion coefficient yields a diffusion equation
fin; ~
~J_D:N?n; =0




Ambipolar Diffusion

4N

 Ina bounded plasma there will be a flux of particles (diffusion)
towards the container walls

 Electrons are lighter and in thermodynamic equilibrium will travel
faster. Electrons will be the first to leave the plasma and will
establish a negative charge near the wall.

« This charge unbalance will eventually adjust the fluxes to maintain
plasma quasi-neutrality
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 Further flow of electrons will be prevented by this negative
space charge. The ion flux will be increased.

« A Dbalance is reached when the space charge electric field
produces equal 1on and electron fluxes:

G; = G m:n.E - D;Nn, =G, -q—emeneE—DeNne
Gl G|

D,-D,Nn
m; +m, N

E =

» The equilibrium flux will be then

Gi:mD DeNn D.Nn. = - miDi+ rnDeNn
m; +m, m; +m,
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« ambipolar diffusion coefficient

miDe'I'meDi

D. =
T+ m,

ambipolar diffusion equation
in

Mt
the case of m<<m;, u, > p; and T,=T, D, » D; + % D, = 2D,

DNn 0

« The ambipolar diffusion enhances the diffusion rate by a
factor of two but the diffusion is still controlled by the
slower species
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Collisions in Fully lonized Plasmas

« Collisions among particles of the same species produce on
average a small diffusion effect because the guiding centers
remain, for the most part, in the same position.

 Collisions between particles of opposite charge can cause
Instead a significant change in the guiding center position:
these collisions generate diffusion.

 Electrons execute a random-walk type of diffusion, ions are
diffusing as a result of the cumulative effect of the collisions.




Plasma Resistivity

« The fluid equations of motion for electron and ions in
presence of charged-particle collisions are

n;m ddUI_qI n (E+u; " B)-NxP, +F,
du, _ . -
nemeE_Qene(E'l'ue B)_NXPe +Fei

= =myng(Ug = Ui N Fo = -mn (U; —u, N

« Conservation of momentum requires

F =-F.

e

€l
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* F;, (F) represent the momentum gain of the ion (electron)
fluid due to the collisions with the electrons (ions)

« Since only Coulomb collisions are involved F;, and F
will be proportional to the square of the charge (here
considered as €?)

« F,, and F_ must be also proportional to the ion and
electron densities (here considered as n?).

« Therefore, on physical grounds, it can be written

|:ei = heznz(ui - ue)
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« Comparing

I:ei = heznz(ui - ue)

|:ei = _mene(ue - ui)nei

It is readily found
M

h =
e’n?

« plasma specific resistivity

W = 2 I
‘*-@“*ifi e Et=T



« By evaluating the electron-ion collision frequency (short-range,
large angle collision) through a particle trajectory

approximation it is found

ne

Vi =
el 16me? m?u?

(where u is the impact velocity) and therefore the

resistivity Is m 02
T= ezVel = 16me? mus
e 1 -, 1
« For a Maxwellian distribution —mu® = EkBT
pe’m??
= 40 )2 (KaT. )22
( peo) ( B e)
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« The Spitzer resistivity includes a correction to provide
better accuracy given by a factor In 4

(Coulomb logarithm) as

pe’mt?
(4peo)” (KgT,)*?

h = InL

The A represents the maximum impact parameter.

In A4 Is insensitive to the exact values of the plasma
parameters. For most purposes, it will be sufficiently

accurate to let it = 10 regardless of the type of plasma
Involved.

MEDEHE D
¥ B4 5 Sgnssumma



Nsse

« Incase a plasma current is carried only by the electrons,
with B=0 and with T,~0 (cold plasma) the electron fluid
equation of motion in steady state Is simply

O0=-enE+F;
e Since
R =he’n®(u; - u,)
and
j = en(ui - ue)
then

E =hj

that is the simplest form of the Ohm’s law
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 Ina fully ionized plasma the plasma resistivity Is
Independent on the density n because If the charge carriers
Increase also the collisional friction increase and the effects

cancel out.

* Inaweakly ionized plasma instead the collisional friction
IS due only to the neutrals and therefore does not increase
with n and the current, for a given E Is proportional to n.

 Fully 1onized plasmas become “collisionless™ at high
temperature .
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