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General Properties of MHD Equilibria 

• Equilibrium
• Plasma Beta
• Pressure and Tension
• Diamagnetic current
• Plasma Diffusion 
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plasma magnetohydrodynamic equilibrium
•Equilibrium structures (no time dependence, no plasma flow) are important and 
often approximately a reasonable assumption for space plasmas during quiet 
times. 
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Auxiliary Derivation
• Here show 

• Consider the component form of the second term on the right:

while the component form of 
the B2 term on the right is:

• We now examine the 
component form of the 
left hand side:
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• The ratio between the thermal (kinetic) pressure and the magnetic pressure:

sum of the thermal pressure and the magnetic pressure
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• The RHS can be neglected in many cases like 
a straight magnetic field or when B varies 
slowly along B itself

Plasma b



Plasma b

• β >>1, thermal plasma, plasma pressure forces dominates
• β ~1, warm plasma
• β <<1, cold plasma, magnetic field force dominates 

For example, coronal active regions β <<1
solar wind at 1 AU β ~1
current sheet in the magetotail β >>1



Example : pressure-balanced plasma column θ – pinch
So called because currents flow in θ direction

Take the column to be length, uniform: B has only z –
component, j has only θ component, has only r 
component, so we only need force: 

Ampere: 
Eliminate j

Solution: 



Magnetic Tension

It is know that two wires carrying parallel 
currents attract as if the magnetic field lines of 
force were under tension

Magnetic tension is described by the term

If the magnetic lines of force are straight and parallel then 
and . This term is only important if the 

magnetic lines of force are curved. 



To show this, consider the geometric 
construction as shown and let 

be the unit vector in the 
direction of the field. By definition:

Where l is the coordinate alone the line of force

It is clear that 

Where     is the normal to the field line, while                 , therefore,  

So that the magnetic tension is in inversely proportional to the 
radius  of curvature of the magnetic field line.  The lines of force 
can be regarded as elastic cords under tension  



Magnetic Tension
• The magnetic tension, always is a restoring force: if the field 
lines have a convex curvature into the upward direction, leading to 
a force directed downward.  If the curvature is opposite, the force 
is also is in the opposite direction.  Magnetic field lines have a 
tendency to shorten. 



Magnetohydrostatics

• In the study of dynamical systems it is always useful to start 
with a study of the simplest solutions. These are usually the 
stationary states.
• Many physical processes in plasma systems occur slowly, i.e. on 
time-scales which are much longer than the typical time-scale of 
the system. 
Ø No time dependence and no plasma flows 
Ø More precise: The dynamic terms in MHD are small compared 

with static forces (Lorentz-force, plasma pressure gradient) 
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Magnetic Surface 0 ( )p p= × -Ñ + ´ = - ×ÑB J B B

Consider some arbitrary volume in which 
.Drawn contours ( surface in 3-D) 

on which p=const. At any point on this 
surface, is perp to the surface.

0p- ×Ñ =B

B lines is in the surface of p = const. In equilibrium isobaric 
surface are “magnetic surface” 

Pressure is constant on a field-line (in MHD  situation)

Implies B is also perp to the 



Current Surface

J 0p×Ñ =

0 ( )p p= × -Ñ + ´ = - ×ÑJ J B J

Isobaric Surface are “current surface”. Therefore,
“Magnetic Surfaces” are “ Current Surfaces”

It is important to note that the existent of magnetic surface is 
guaranteed only in the MHD approximation when . 

Taking account of corrections to MHD, we may not have 
magnetic surfaces even if 



Low-beta equilibria: Force-free plasmas
In the cases the ratio of kinetic to magnetic pressure is small, β 

, and we can approximately ignore .  Such a 
equilibrium is called “force free”

0p-Ñ + ´ =J B 0´ =J B

Implies J and B are parallel. ( )rm=J B

0 ( ( ) ) ( ) ( ) ( ) ( ) ( )r r r rm m m m= Ñ × = Ñ × = Ñ × + ×Ñ = ×ÑJ B B B B

This means that cannot vary along a magnetic field line. In 
general, can have different values on different field lines, but 
it has to be a constant on one field line. 

Scalar function 

Where μ is a scalar, which in principle can be a function of space.
Current flows along field lines, but do not across.  Take divergence:



Low-beta equilibria: Force-free plasmas
The simplest case is to consider μ to be constant. – linear 
force-free field.  

This is a somewhat more convenient form because it is linear in 
B (for specified 

A linear equation can in general be solved by a series expansion. 
Since it is still a vector equation rather than a scalar equation, 
obtaining a general solution by series expansion is slightly 
complicated. Here we shall not discuss this general solution, 
but only consider the solution with cylindrical symmetry. 
Written in cylindrical coordinates assuming cylindrical 
symmetry (i.e. no variation of any quantity in θ or z directions):



Leads to a Bessel function solution: 

Where J0 and J1 are Bessel functions of order 0, 1.  



Diamagnetic Drift

• Fluid momentum equation:

( ) ( )nm qn p
t

¶é ù+ ×Ñ = + ´ - Ñê ú¶ë û
u u u E u B

Since a fluid element is composed of many individual particles, 
one would expect the fluid to have drifts perpendicular to B if the 
individual guiding centers have such drifts. However, since the 

term appears only in the fluid equations, there is a drift 
associated with it which the fluid elements have but the particles 
do not have. 



• Assuming : Uniform E and B,  n and p have a gradient
• To study the motion perpendicular to B the cross product of 

the momentum equation with B is taken (neglecting the LHS):

( )0 qn p= + ´ ´ - Ñ ´E u B B B

that yields 

2 2
p

B qnB^
´ Ñ ´

= = -
E B Bu v

• The first term is the usual ExB drift, as in the particle 
description, the second term is called diamagnetic drift



• The diamagnetic drift does not depend on the mass but 
changes sign with the charge: this causes a diamagnetic 
current since electrons and ions drift in opposite directions

2dia
B p

B
^ ^´Ñ

=j

Ø Diamagnetic current arise from Lamor motion when there 
is a density  gradient.

density  gradient. 



Neutral sheet current
A typical example of a diamagnetic current is the neutral sheet in 
the magnetotail of the Earth, which divides the regions of inward 
(in the northern lobe) and outward magnetic fields.

Parameters: 
temperature 1-10 keV, 
transverse field 1-5 nT, 
density 1 cm-3, 
thickness 1-2 RE, 
very high plasma beta,

b = 10~100. 



Here BL is the lobe magnetic 
field, and LB its variation 
scale length.

The Harris model sheet is shown below.

The boundary of the plasma sheet is 
determined by a balance between the 
magnetic pressure of the tail lobes and the 
kinetic pressure of the plasma sheet plasma:
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• The diamagnetic current jD decreases the magnetic field 
inside the plasma keeping the sum of thermal and magnetic 
pressures constant everywhere in the cylinder

B

jD

low B
high p

high B
low p

-



• The infinite, homogeneous plasmas for the equilibrium 
conditions are, of course, highly idealized. 

• Plasmas follow density gradients and diffuse trying to fill 
lowest density regions: plasma diffusion occur, at different 
rates, with and without magnetic fields

• In the case of weakly ionized plasmas the diffusion occurs 
mainly because collisions between charged particles and 
neutrals

Plasma Diffusion



Collision Primer

• A flux of test particles is colliding with target particles of 
density nT

• Target particles offer a cross-sectional area s and are 
contained in a slab of area A and thickness dx

• Collisions occur only when a test particle is intercepted by a 
target and in that case the test particle will loose all its 
momentum

dx
A

s



• The number of particles in the slab is nAdx and the fraction 
area blocked by the target particles is 

• If flux of incident particles is Γ the flux emerging from the 
slab is Γ *=Γ(1-σndx). 

d n
dx

s
G

= - G

that has the solution  

0 0exp( ) exp( )mn x xs lG = G - = G -

where the quantity λm =1/n is called the mean free path for 
collisions  



• If u is the velocity of the incident particles, the mean time 
between collisions is t=λm / u and the mean collision 
frequency will be ν= u / λm=un

• For incident particles with a velocity distribution the 
collision frequency is defined by taking the average of v
over that distribution 

• σ can also be function of the velocity



• Consider the basic plasma diffusion process with a scalar 
pressure term and collisional plasma (No magnetic field)

( )nm qn p mn
t

n
¶é ù+ ×Ñ = - Ñ -ê ú¶ë û
u u u E u

• For sufficiently slow motion (compared to the collision 
time), a steady state is considered.

0 qn p mnn= - Ñ -E u



( )1 qn p
mnn

= - Ñu E

• For isothermal plasmas (and subject to the ideal gas
equation of state) it can be written

0 qn p mnn= - Ñ -E u

( )1 B
B

k Tq nqn k T n
mn m m nn n n

Ñ
= - Ñ = -u E E



• The coefficients of E and grad n/n are called mobility and 
diffusion coefficient 

q
mv

m =

• Introducing the mobility and the diffusion coefficient the 
equation for u becomes

B

q D
k T

m =

q nD
q n

m
Ñ

= -u E

and are connected by the Einstein relation

Bk TD
mv

=



• The flux nu of particles can be written then as

• Fick’s law describes a random-walk type of diffusion: the 
motion along grad n occurs only because there are more 
particles in regions with larger n

• When the particles are neutral (or E=0), the Fick’s law is 
found as a special case :  

qn n D n
q

mG = = - Ñu E

n D nG = = - Ñu



Diffusion Equation
• The continuity equation for each species j=i,e can be written 

as
( ) 0j

j
n

n
t

¶
+ Ñ × =

¶
u

and by using Fick’s law j j jD nG = - Ñ

( ) 0j
j j

n
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and for uniform diffusion coefficient yields a diffusion equation
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Ambipolar Diffusion

• In a bounded plasma there will be a flux of particles (diffusion) 
towards the container walls

• Electrons are lighter and in thermodynamic equilibrium will travel 
faster. Electrons will be the first to leave the plasma and will 
establish a negative charge near the wall.

• This charge unbalance will eventually adjust the fluxes to maintain 
plasma quasi-neutrality
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• Further flow of electrons will be prevented by this negative 
space charge. The ion flux will be increased.

• A balance is reached when the space charge electric field 
produces equal ion and electron fluxes:
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• The equilibrium flux will be then
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ambipolar diffusion equation
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• ambipolar diffusion coefficient

the case of me<<mi , and Ti=Te 2e
a i e i

i
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• The ambipolar diffusion enhances the diffusion rate by a 
factor of two but the diffusion is still controlled by the 
slower species



Collisions in Fully Ionized Plasmas

• Collisions among particles of the same species produce on 
average a small diffusion effect because the guiding centers 
remain, for the most part, in the same position.

• Collisions between particles of opposite charge can cause 
instead a significant change in the guiding center position: 
these collisions generate diffusion.

• Electrons execute a random-walk type of diffusion, ions are 
diffusing as a result of the cumulative effect of the collisions.



Plasma Resistivity
• The fluid equations of motion for electron and ions in 

presence of charged-particle collisions are

( ) P Fi
i i i i i i ie

dn m q n
dt

= + ´ - Ñ × +
u E u B

F ( )ei e e e i eim n n= - -u u

( ) P Fe
e e e e e e ei

dn m q n
dt

= + ´ - Ñ × +
u E u B

F ( )ie i i i e iem n n= - -u u

• Conservation of momentum requires

F Fie ei= -



• Fie (Fei) represent the momentum gain of the ion (electron) 
fluid due to the collisions with the electrons (ions)

• Since only Coulomb collisions are involved Fie and Fei
will be proportional to the square of the charge (here 
considered as e2)

• Fie and Fei must be also proportional to the ion and 
electron densities (here considered as n2). 

• Therefore, on physical grounds, it can be written

2 2F ( )ei i ee nh= -u u



• Comparing

2 2F ( )ei i ee nh= -u u

F ( )ei e e e i eim n n= - -u u

it is readily found 

2 2
eim

e n
n

h =

• plasma specific resistivity



• By evaluating the electron-ion collision frequency (short-range, 
large angle collision) through a particle trajectory 
approximation it is found

(where u is the impact velocity) and therefore the 
resistivity is

• For a Maxwellian distribution
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• The Spitzer resistivity includes a correction to provide 
better accuracy given by a factor ln Ʌ

(Coulomb logarithm) as 

The Ʌ represents the maximum impact parameter.    
ln Ʌ is insensitive to the exact values of the plasma 
parameters. For most purposes, it will be sufficiently 
accurate to let it = 10 regardless of the type of plasma 
involved. 
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• In case a plasma current is carried only by the electrons, 
with B=0 and with Te~0 (cold plasma) the electron fluid 
equation of motion in steady state is simply

0 Feien= - +E

( )i een= -j u u

• Since
2 2F ( )ei i ee nh= -u u

and

then
h=E j

that is the simplest form of the Ohm’s law



• In a fully ionized plasma the plasma resistivity is 
independent on the density n because if the charge carriers 
increase also the collisional friction increase and the effects 
cancel out.

• In a weakly ionized plasma instead the collisional friction 
is due only to the neutrals and therefore does not increase 
with n and the current, for a given E is proportional to n.

• Fully ionized plasmas become “collisionless” at high 
temperature .


