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Abstract The Arbitrary accuracy Derivatives Riemann problem method (ADER) scheme is a new

high order numerical scheme based on the concept of finite volume integration, and it is very easy to

be extended up to any order of space and time accuracy by using a Taylor time expansion at the cell

interface position. So far the approach has been applied successfully to flow mechanics problems. Our

objective here is to carry out the extension of multidimensional ADER schemes to multidimensional

MHD systems of conservation laws by calculating several MHD problems in one and two dimensions:

(i) Brio-Wu shock tube problem, (ii) Dai-Woodward shock tube problem, (iii) Orszag-Tang MHD

vortex problem. The numerical results prove that the ADER scheme possesses the ability to solve

MHD problem, remains high order accuracy both in space and time, keeps precise in capturing the

shock. Meanwhile, the compared tests show that the ADER scheme can restrain the oscillation and

obtain the high order non-oscillatory result.

Key words ADER scheme, Generalized Riemann problem, MHD numerical simulation,

HLL scheme
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0�Introduction

The classical Riemann problem is the Cauchy prob-

lem for a system of hyperbolic conservation laws, with

initial condition consisting of two constant states sep-

arated by a discontinuity. The self-similar solution of

this Riemann problem was first used by Godunov[1−2]

to construct his first-order upwind numerical flux.

Since then, methods to solve the classical Riemann

problem have been studied, for example, in Ref.[3].

One of the developed methods is to extend the local

Riemann problem to the Generalized Riemann prob-

lem at cell interface position. The so-call Generalized

Riemann problem, in which the initial condition con-

sists of two polynomials of the first degree (vectors)

separated by a discontinuity at the interface, was first

constructed by Ben-Artzi et al.[4] in one dimension.

According to Toro’s concept of the Generalized Rie-

mann problem[5], the initial condition consists of two

kth order polynomial functions, which are denoted as

the corresponding Generalized Riemann problem by

GRPk. For example, GRP0 means that all first and
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higher-order spatial derivatives of the initial condition

for the GRP away from the origin vanish identically,

which corresponds to the classical piece-wise constant

data Riemann problem. Similarly, GRP1 means that

all second and higher-order spatial derivatives of the

initial condition for the GRP away from the origin

vanish identically, which corresponds to the piece-

linear data Riemann problem. The most general case

is that the initial conditions are two arbitrary but in-

finitely differentiable functions, which are denoted by

GRP∞.

A major simplification to the GRP methodol-

ogy comes with the Modified GRP (MGRP) scheme,

proposed by Toro et al.[6] In this scheme the GRP

is solved by two conventional Riemann problems,

namely one non-linear problem for the leading term

for state variables and one linear problem for gra-

dients of state variables. The Arbitrary accuracy

Derivatives Riemann problem method (ADER) ap-

proach can be regarded as a further development of

the MGRP scheme in that it breaks the barrier of

second-order accuracy and allows the construction of

arbitrarily high-order accurate schemes, both in time

and space. This approach was put forward firstly

by Toro and his collaborators[7], where they achieved

10th order of accuracy in both space and time. The

ADER scheme has been applied successfully to the

hydrodynamic systems. Titarev et al.[3,5,8,15] applied

this scheme to the scalar advection-reaction-diffusion

equations. Toro et al.[9] used TVD fluxes for the high-

order ADER schemes. Toro et al.[10−14] used this

scheme for linear and non-linear hyperbolic conser-

vation laws from one- to three-dimensional hydrody-

namic problem. Motivated by the ADER’s successful

application to hydrodynamic problem, we try to im-

plement the scheme for MHD simulation. We apply

the scheme to several MHD problems which are calcu-

lated in one and two dimensions: (i) Brio-Wu shock

tube problem, (ii) Dai-Woodward shock tube prob-

lem, (iii) Orszag-Tang MHD vortex problem. The

numerical results show that the ADER scheme pos-

sesses the ability to solve MHD supported by prob-

lem, and remains high order accuracy both in space

and time.

1�Solution Method

1.1 Numerical Scheme in One Dimension

Consider the one dimensional ideal MHD equations

of conservation form:

∂tU + ∂xF (U) = 0, (1)

where

U = [ρ, ρvx, ρvy, ρvz, E, Bx, By, Bz]T

is the vector of unknown conservative variables and

F (U) is the flux vector, where ρ is the density,

(vx, vy, vz) is the flow speed, (Bx, By, Bz) is the mag-

netic field,

E = p/(γ − 1) + ρ(v2
x + v2

y + v2
z)/2+

(B2
x + B2

y + B2
z)/2

is the total energy, and p is the pressure. Integrating

Eq. (1) over a space-time control volume in x-t space

[xi−1/2, xi+1/2] × [tn, tn+1]

of dimensions

Δx = xi+1/2 − xi−1/2, Δt = tn+1 − tn,

we obtain the following one-step finite-volume

scheme:

Un+1
i = Un

i +
Δt

Δx
(F i−1/2 − F i+1/2). (2)

Here Un
i is the cell average of the solution at time

level tn, and can be given by the initial value. F i+1/2

is the time average of the physical flux at cell interface

xi+1/2. They can be given respectively:

Un
i =

1
Δx

∫ xi+1/2

xi−1/2

U(x, tn)dx,

F i+1/2 =
1

Δt

∫ tn+1

tn
F [U(xi+1/2, t)]dt. (3)

For convenience, we replace t by τ = t−tn. Then

we can change the numerical flux as:

F i+1/2 =
1

Δt

∫ Δt

0
F [U(xi+1/2, τ)]dτ. (4)
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Then we can obtain the value of U(xi+1/2, τ) as fol-

lows:

To evaluate the leading term, we write a Taylor

expansion of the interface state in time

U(xi+1/2, τ) =U(xi+1/2, 0+)+
K∑

k=1

[ ∂k

∂tk
U(xi+1/2, 0+)

]τk

k!
,

(5)

where U(xi+1/2, 0+) = lim
t→0+

U(xi+1/2, t) and K is

the order of the approximation.

Eq. (5) consists of two parts: the leading

term U(xi+1/2, 0+) and the higher order terms
∂k

∂tk
U(xi+1/2, 0+), which need to be solved respec-

tively. The leading term accounts for the first-

instant interaction of the boundary extrapolated val-

ues UL(xi+1/2) and UR(xi+1/2), and can be obtained

by the conventional Riemann problem:

∂tU + ∂xF (U) = 0;

U(x, 0) =

{
UL(xi+1/2), x < xi+1/2,

UR(xi+1/2), x > xi+1/2.
(6)

A key ingredient here is the availability of approxi-

mate Riemann solver to provide this first term in the

expansion. In this paper, we use the HLL’s Riemann

solver, which was put forward by Harten, Lax and

Van Leer[16].

The higher order terms are evaluated in two

steps. First we express all time derivatives via spa-

tial derivatives by means of the Cauchy-Kowalewski

procedure[3]. For system Eq. (1) the procedure yields

the following expressions:

∂tU = −
(∂F

∂U

)
∂xU ,

∂txU = −
( ∂2F

∂U2

)
(∂xU)2 −

(∂F

∂U

)
∂xxU ,

∂ttU = −
( ∂2F

∂U2

)
∂t∂xU −

(∂F

∂U

)
∂xtU , (7)

and so on. From Eq. (7), we can obtain all the high or-

der time derivatives required by Eq. (5) if the spatial

derivatives are known. Thus, our next step is to calcu-

late the spatial derivatives. The evolution equations

for the spatial derivatives can be derived by differen-

tiating the governing Eq. (1). In general, the obtained

evolution equation for each spatial derivative

U (k) ≡ ∂k

∂xk
U , 1 � k � K

is in non-conservative form and contains a nonlinear

source term H depending on spatial derivatives:

∂t(U (k)) + A(U )∂x(U (k)) =

H(U (0), U (1), · · · , U (l)),

l = 0, · · · , K − 1; k = 1, · · · , K, (8)

where the coefficient matrix A(U) is precisely the Ja-

cobian matrix
∂F

∂U
. For the Taylor expansion Eq. (5)

we need the solution of Eq. (8) for each k = 1, · · · , K

at interface position x = xi+1/2 at the time τ =

0+. Therefore, the source term comes into effect

for τ > 0 only, and can be neglected. Additionally,

we linearize the equation around the leading term

U(xi+1/2, 0+) of the time expansion Eq. (5) and re-

place the piece-wise polynomial initial data by left

and right boundary extrapolated values of spatial

derivatives at xi+1/2. The described simplifications

result in the following linear conventional Riemann

problem for the spatial derivatives U (k):

∂t(U (k)) + Ai+1/2∂x(U (k)) = 0,

Ai+1/2 = A[U(xi+1/2, 0+)];

U (k)(x, 0) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂k

∂xk
UL(xi+1/2, 0+) ≡

lim
t→0+

∂k

∂xk
UL(xi+1/2, t), x < xi+1/2,

∂k

∂xk
UR(xi+1/2, 0+) ≡

lim
t→0+

∂k

∂xk
UR(xi+1/2, t), x > xi+1/2.

(9)

Note that the coefficient matrix Ai+1/2 is the same

for all derivatives and has to be evaluated only once.

Then the spatial derivatives U (k) in Eq. (9) are com-
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puted as U (k) = U (k)
∗ (0), with the

U (k) = U (k)
∗

[
(x − xi+1/2)/τ

]
as the self-similar solution of Eq. (9).

Finally, having found all spatial derivatives we

form the Taylor expansion Eq. (5). Then there are

two options now existing to evaluate the numeri-

cal flux. The first option is the state-expansion

ADER[15], in which the approximate state Eq. (5)

is inserted into the definition of the numerical flux

Eq. (3) and then an appropriate Kth-order accurate

quadrature is used for time integration:

F i+1/2 =
Kl∑
l=0

F [U(xi+1/2, γlΔt)]ωl. (10)

Here γl and ωl are properly scaled nodes and weights

of the rule and Kα is the number of nodes.

The second option to evaluate the numerical flux

is the flux-expansion ADER[5,12], in which we seek

Taylor expansion of the physical flux at xi+1/2:

F (xi+1/2, τ) =F (xi+1/2, 0+)+
K∑

k=1

[ ∂k

∂tk
F (xi+1/2, 0+)

]τk

k!
.

(11)

From Eq. (3) and Eq. (11) the numerical flux is now

given by

F i+1/2 =F (xi+1/2, 0+)+
K∑

k=1

[ ∂k

∂tk
F (xi+1/2, 0+)

] Δtk

(k + 1)!
.

(12)

The leading term F (xi+1/2, 0+) accounts for the

first interaction of left and right boundary extrapo-

lated values and is computed as a certain monotone

flux of the conventional Riemann problem Eq. (6) for

the leading term of the state expansion Eq. (5). The

remaining higher order time derivatives of the flux in

Eq. (12) are expressed via time derivatives of the in-

tercell state
∂k

∂tk
U(xi+1/2, 0+), which are known from

Eq. (5).

In our calculations, we choose the second option

Eq. (12). And then, the solution is advanced in time

by updating the cell averages according to the one-

step formula Eq. (2).

1.2 Numerical Scheme in Two Dimensions

The process is the same as one-dimensional sit-

uation. Consider the following two dimensional non-

linear system of conservation laws:

∂tU + ∂xF (U) + ∂yG(U) = 0. (13)

Integration of Eq. (13) over a space-time control vol-

ume of dimensions

Δx = xi+1/2 − xi−1/2,

Δy = yj+1/2 − yj−1/2,

Δt = tn+1 − tn

produces the following one-step finite-volume scheme:

Un+1
i,j =Un

i,j +
Δt

Δx
(F i−1/2,j − F i+1/2,j)+

Δt

Δy
(Gi,j−1/2 − Gi,j+1/2). (14)

Here Un
i,j is the cell average of the solution at time

level:

Un
i,j =

1
Δx

1
Δy

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

U(x, y, tn)dydx.

(15)

And F i+1/2,j , Gi,j+1/2 are the space-time averages of

the physical fluxes at the cell interfaces:

F i+1/2,j =
1

Δt

1
Δy

·
∫ yj+1/2

yj−1/2

∫ tn+1

tn
F [U(xi+1/2, y, t)]dtdy,

Gi,j+1/2 =
1

Δt

1
Δx

·
∫ xi+1/2

xi−1/2

∫ tn+1

tn
G(U (x, yj+1/2, t))dtdx.

(16)

While describing the procedure to evaluate the

numerical flux in two dimensions we concentrate on

F i+1/2,j ; the expression for Gi,j+1/2 is obtained in

an entirely analogous manner.

The evaluation of the ADER numerical flux con-

sists of the following steps. First we discretize the

spatial integrals over the cell faces in Eq. (16) using

a tensor product of a suitable Gaussian numerical

quadrature. The expression for the numerical flux
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in the x coordinate direction then reads

F i+1/2,j =
N∑

α=1

{
1

Δt

∫ tn+1

tn
F

[
U(xi+1/2, yα, t)

]
dt

}
Kα.

(17)

Where yα is the integration points over the cell face

[yj−1/2, yj+1/2] and Kα is the weights computed by

the Gauss numerical quadrature. Normally, we use

the two-point Gaussian quadrature for third and

fourth order schemes and a higher-order Gaussian

quadrature for fifth and higher order schemes.

The following steps are provided only for x-

direction computation and the same procedure fol-

lows for y-direction computation.

We write Taylor series expansion in time

U(xi+1/2, yα, τ) =

U(xi+1/2, yα, 0+)+
K∑

k=1

[ ∂k

∂tk
U(xi+1/2, yα, 0+)

]τk

k!
, (18)

where τ = t− tn. The leading term U(xi+1/2, yα, 0+)

is the Godunov state of the conventional Riemann

problem

∂tU + ∂xF (U ) = 0;

U(x, yα, 0) =

{
UL(xi+1/2, yα), x < xi+1/2,

UR(xi+1/2, yα), x > xi+1/2.(19)

To evaluate higher-order terms we first express all

time derivatives by spatial derivatives by means of

the Cauchy-Kowalewski procedure. We can derive

homogeneous evolution equations and the initial con-

ditions for each spatial derivative

U (k+l) ≡ ∂k+l

∂xk∂yl
U , 1 � k + l � K. (20)

The spatial derivatives at (x−xi+1/2)/τ = 0 are then

the Godunov states of the following linearized Rie-

mann problem with piece-wise constant initial data:

∂t(U (k+l)) + Ai+1/2∂x(U (k+l)) = 0,

Ai+1/2 = A[U (k+l)(xi+1/2, 0+)];

U (k+l)(x, yα, 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂k+l

∂xk∂yl
UL(xi+1/2, yα, 0+) ≡

lim
t→0+

∂k+l

∂xk∂yl
UL(xi+1/2, yα, t),

x < xi+1/2,

∂k+l

∂xk∂yl
UR(xi+1/2, yα, 0+) ≡

lim
t→0+

∂k+l

∂xk∂yl
UR(xi+1/2, yα, t),

x > xi+1/2.

(21)

After solving Eq. (20) for 1 � k + l � K, we form the

Taylor expansion Eq. (18) for the interface state at

the Gaussian integration point (xi+1/2, yα). The flux

of the state-expansion ADER scheme is obtained by

inserting the approximate state Eq. (18) into formula

Eq. (17) and using an appropriate Kth-order accurate

quadrature for time integration:

F i+1/2,j =
N∑

α=1

N∑
l=1

[F (U(xi+1/2, yα, τ))Kl]Kα. (22)

For the flux expansion ADER schemes we write Tay-

lor time expansion of the physical flux at each point

F (xi+1/2,yα, τ) =

F (xi+1/2, yα, 0+)+
K∑

k=1

[ ∂k

∂tk
F (xi+1/2, yα, 0+)

]τk

k!
.

(23)

From Eq. (16) and Eq. (22) the numerical flux is

given by

F i+1/2 =

F (xi+1/2, yα, 0+)+
K∑

k=1

[ ∂k

∂tk
F (xi+1/2, yα, 0+)

] Δtk

(k + 1)!
. (24)

Entirely analogous to the one-dimensional case, the

leading term F (xi+1/2, yα, 0+) is computed from

Eq. (19) using a monotone upwind flux. The remain-

ing higher order time derivatives of the flux in Eq. (22)

are expressed via time derivatives of the intercell state

U(xi+1/2, yα, 0+) which are given by the Taylor ex-

pansion Eq. (18). The solution is advanced in time by

updating the cell averages according to the one-step

formula Eq. (14).
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In the ADER scheme solving method, the key

process is to solve the Riemann problem. There are

many methods to solve the Riemann problem, such as

the MUSCL (Monotone Upstream-centered Schemes

for Conservation Laws) scheme[17], PPM (piecewise

parabolic method) scheme[18], and HLL scheme[13].

The HLL scheme used in the present paper to solve

the Riemann problem can be described as follows:

∂tU + ∂xF (U) = 0;

U(x, 0) =

{
UL(xi+1/2), x < xi+1/2,

UR(xi+1/2), x > xi+1/2. (25)

The interface value and the numeral flux have

the form as:

U(xi+1/2, 0+) =

⎧⎪⎪⎨
⎪⎪⎩

UL, bL
i � x/t;

U∗, bL
i � x/t � bR

i ;

UR, bR
i � x/t. (26)

F (xi+1/2, 0+) =

⎧⎪⎪⎨
⎪⎪⎩

F (UL), b−i � 0;

F ∗, b−i � 0 � b+
i ;

F (UR), b+
i � 0. (27)

where

U∗(xi+1/2, 0+) =
1

bR
i − bL

i

{
bR
i UR−

bL
i UL − [F (UR) − F (UL)]

}
, (28)

F ∗(xi+1/2, 0+) =
1

b+
i − b−i

{
b+
i F (UL) − b−i

[
F (UR)

]}
+

b+
i b−i

b+
i − b−i

(UR − UL), (29)

bR
i = max{v̄xi + c̄fxi, vxR + cfxiR},

bL
i = max{v̄xi − c̄fxi, vxL − cfxiL},

b+
i = max{bR

i , 0},
b−i = min{bL

i , 0}, (30)

where v̄xi and c̄fxi are the Roe average of velocity and

fast magnetic sound velocity.

ρ̄i =
√

ρLρL +
√

ρRρR√
ρL +

√
ρR

,

v̄αi =
√

ρLvαL +
√

ρRvαR√
ρL +

√
ρR

, α = x, y, z

B̄βi =
√

ρLBβR +
√

ρRBβL√
ρL +

√
ρR

, β = x, y, z

H̄i =
√

ρLHL +
√

ρRHR√
ρL +

√
ρR

.

Here H is the enthalpy, has the form as:

ρH = E + p + B2/2 =
γp

γ − 1
+ ρv2/2 + B2,

where v2 = v2
x + v2

y + v2
z and B2 = B2

x + B2
y + B2

z ,

then the Roe average are:

v̄2 = v̄2
x + v̄2

y + v̄2
z ,

B̄2 = B̄2
x + B̄2

y + B̄2
z .

The fast magnetic sound velocity

cfxi ≡cfxi(ρi, vαi, Bβi, Hi) =√
(a2∗ +

√
a4∗ − 4(γpB2

x)/ρ2)/2 ,

where

a2
∗ = (γp + B2)/ρ,

and then

c̄fxi = cfxi(ρ̄i, v̄αi, B̄βi, H̄i).

2�Numerical Results

2.1 Brio-Wu Shock Tube Problem

Proposed by Brio and Wu[19−20], this MHD problem

has been a benchmark test for solving the one dimen-

sional ideal MHD equations. Similar to Sod’s shock-

tube problem[19], the initial condition is composed of

two distinct constant states:

ρ1 = 1.0, u1 = 0.0, v1 = 0.0,

p1 = 1.0, By1 = 1.0;

ρ2 = 0.125, u2 = 0.0, v2 = 0.0,

p2 = 0.1, By2 = −1.0.

In addition, Bx = 0.75, γ = 2.0 is a constant

value in the whole domain [0, 1]. According to Brio

and Wu et al.[19], numerical solutions with a uniform

mesh of 800 grid points and the CFL=0.8 are ob-

tained. Figure 1(a)∼(d) show numerical solution of

density, velocity vx, magnetic field By and pressure at

400 time steps. From this figure, we can see that the
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wave family consists of right-moving and left-moving

waves. The left-moving waves are a fast rarefaction

wave, denoted by FR in the figure, and a slow com-

pound wave, denoted by SM. The right-moving waves

included a contact discontinuity, denoted by C, a Slow

Shock (SS), and a Fast Rarefaction wave, FR. Our re-

sult shows sharp resolution of all shock waves.

Figure 1(e) shows the result of grid refinement

study, in which 400, 800, 1600 grid points are used.

And the CFL number used for these three calcula-

tions is the same. It is clear to see that, mesh refine-

ment can improve numerical accuracy.

2.2 Dai-Woodward Shock Tube Problem

Dai and Woodward’s shock tube problem has

been studied by Dai and Woodward[21] and Bouchut

et al.[20] The initial data[20] are given as:

Fig. 1 MHD solution by ADER scheme for Brio-Wu shock tube problem. (a) density profile, (b) velocity vx profile,

(c) magnetic field By profile, (d) pressure profile, (e) comparison between different resolutions
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ρl = 1.08, vxl = 1.2, vyl = 0.01, vzl = 0.5,

pl = 0.95, Byl = 3.6/
√

4π, Bzl = 2/
√

4π;

ρr = 1.0, vxr = 0.0, vyr = 0.0, vzr = 0.0,

pr = 1.0, Byr = 4/
√

4π, Bzr = 2/
√

4π.

In addition, Bx = 4/
√

4π, γ = 2 is a constant value

in the whole domain [0, 1] with a uniform mesh of

1000 grid points, and the CFL number is set to be

0.45. Figure 2(a)∼(d) show numerical solution of den-

sity, velocity vy, magnetic field By and pressure at

t = 0.15. There are seven discontinuities in this case:

the left moving, a fast shock, a slow shock and a ro-

tational discontinuity; the right moving, a fast shock,

a slow shock, a rotational discontinuity and a contact

discontinuity.

Fig. 2 MHD solution by ADER scheme for Dai-Woodward shock tube problem. (a) density profile,

(b) velocity vy profile, (c) magnetic field By profile, (d) pressure profile,

(e) comparison between different resolution
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By comparison with that of Bouchut et al.’s

results[20], again the MHD solution with ADER

scheme is quite good. Under the same CFL condi-

tion, different resolutions have been examined with

1000, 2000, 3000 grid points respectively. Figure 2(e)

shows comparison of density profiles. The accuracy is

nearly the same with different resolution. So in this

case, the mesh refinement does not improve numerical

accuracy.

2.3 Orszag-Tang MHD Vortex Problem

As our preliminary effort to apply the ADER

method for multidimensional MHD problem, the

Orszag-Tang MHD vortex problem[22] is adopted

here. This compressible flow proposed by Orszag

and Tang contains significant features of MHD tur-

bulence, and has been taken as a standard numerical

test[22−26]. The flow involves complex evolution due

to interactions between shock waves and the vortices.

The initial conditions are as follows:

(ρ, vx, vy, p, Bx, By) ={
γ2,−γ sin(πy), γ sin(πx),

γ,− sin(πy), sin(2πx)
}
.

Here we used γ = 5/3. The problem was calculated

with a CFL number of 0.2. The computational do-

main is [0, 2π]× [0, 2π] with periodic boundary condi-

tion in both x and y directions. According to Zhang et

al.[25], we use a uniform mesh of 200×200 grid points.

We have successfully run our calculation from t = 0.5

to t = 3, which is the final time in most of previously

published results. Figure 3(a), 3(b) show the density

and pressure contours at t = 0.5 using the same con-

tour level as those in Jiang and Wu[26]. Clearly, our

results are similar to Jiang and Wu’s results.

For the sake of comparison, we show the density

contours at t = 0.5, t = 1, and t = 3 using the same

contour level, shown in Figure 3(a) (c) (d) respec-

tively. Figure 3(a) (c) (d) show very complex shock

structure. At t = 1, an intermediate shock is formed

at the shock front in the region of π < x < 1.5π and

0 < y < 0.75π.

To compare the mesh refinement, we calculated

the density of 200 × 200, 300 × 300 and 400 × 400

grid points, see Figure 3(c) (e) (f). Evidently, these

results are similar to those obtained formerly[22−26].

It is clear that the effect of mesh refinement is not

very palpable. In MHD simulation, how to control

the numerical error of magnetic field divergence is a

challenge[27]. In order to see how this numerical er-

ror evolves, Figure 3(g) expresses the evolution of the

∇ · B numerical error along with time in different

mesh point, in which error E =
∑M

k=1 |(∇ · B)k|
M

(M

is the number of mesh nodes in the computational

domain)[27]. This figure tells that the numerical er-

ror of magnetic field divergence is tolerable.

2.4 Comparison Between HLL and ADER

In order to see the difference of ADER scheme

and HLL scheme, we calculate the following cases:

using second-order HLL method only and ADER

method introduced in Section 2, respectively. We

test Brio-Wu shock tube problem through these two

methods. Figure 4(a) (b) are the density solved by

HLL scheme and ADER scheme with CFL= 0.3 and

CFL= 0.6 at t = 0.1. Through the two figures we can

see that, when the Courant-Friedrichs-Lewy (CFL)

number is small, the two methods show no differences.

But when the CFL number is large, the HLL scheme

turns up some oscillation at the slow shock, while the

ADER scheme does a good job. In conclusion, the

HLL scheme has higher oscillatory result, when CFL

number is large, and the ADER scheme can avoid

this oscillatory and capture the shock for large CFL

number.

3�Conclusion

In this paper, we have presented the ADER scheme

for ideal MHD equations in one and two spatial di-

mension. Contrast to modern Godunov-type, the

ADER method is one-step, fully discrete scheme for

which the reconstruction procedure is carried out only

once per time step, and can be implemented in the
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Fig. 3 MHD solution by the ADER method for Orszag-Tang MHD vortex problem. (a) Density contours of 200

×200 grid points at t = 0.5. (b) Pressure contours of 200×200 grid points at t = 0.5. (c) Density contours of 200×200

grid points at t = 1.0. (d) Density contours of 200×200 grid points at t = 3.0.

(e) Density contours of 300×300 grid points at t = 1.0. (f) Density contours of 400×400 grid points

at t = 1.0. (g) Evolution of the error for ∇ · B in the three cases of the mesh refinement
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Fig. 4 Density for one dimension Brio-Wu shock tube problem at time t = 0.1

for 1000 grid points. (a) CFL=0.3, (b) CFL=0.6

framework of finite volumes and discontinuous

Galerkin finite elements. Several standard MHD

problems have been solved, including Brio-Wu shock

tube problem, Dai-Woodward shock tube problem,

and Orszag-Tang MHD vortex problem. In all cases,

the numerical results by ADER method appears pre-

cise non-oscillation results, and remains high order

accuracy both in space and time in the capture of the

shock. Through the last compared case, the second-

order HLL scheme’s result may produce oscillation at

the slow shock when the CFL number is very large,

such as CFL = 0.6, seeing Figure 4(b). However the

ADER scheme can restrain the oscillation and obtain

the high order non-oscillatory result. Meanwhile, the

numerical error of magnetic field divergence can be

kept to a tolerable range without any special treat-

ment of magnetic field divergence cleaning procedure.

In conclusion, the ADER scheme can be applied in

the MHD numerical simulation, and keeps very high

order accuracy both in space and time.

According to these conclusions, future applica-

tions of the ADER scheme to the MHD numeri-

cal simulations will be a promising work, such as

its applications to magnetic reconnection, solar wind

simulation and solar disturbances in solar-terrestrial

space[23,27−28]. At the same time, improving the

ADER scheme’s order by using different reconstruc-

tion methods, such as Essentially Non-Oscillatory

(ENO), WENO or CWENO scheme[23,29−34], is also

an emphasis in future work.
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