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Abstract In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts
for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic
field from boundary data has been the primary way to obtain fully three-dimensional magnetic information
about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important
for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an
analytical magnetic flux rope model proposed by Titov & Démoulin, which consists of a bipolar magnetic
configuration holding a semi-circular line-tied flux rope inforce-free equilibrium. By only using the vector
field at the bottom boundary as input, we test our code with themodel in a representative range of parameter
space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic
topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux
tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our
CESE–MHD–NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long
as the vector magnetogram satisfies the force-free constraints.
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1 INTRODUCTION

The magnetic field plays a fundamental role in all physi-
cal processes in the Sun’s corona, such as the formation of
coronal loops and prominences (or filaments), the produc-
tion of solar flares, filament eruptions, and coronal mass
ejections (CMEs), as well as the determination of the struc-
ture of the solar wind (Solanki et al. 2006). However, it is
very difficult to make a direct measurement of the coronal
magnetic field. Works that have been done to measure the
coronal fields using radio and infrared wave bands (e.g.,
Gary & Hurford 1994; Lin et al. 2004) can only give frag-
mentary and occasional data. Up to the present, the rou-
tine measurement of the Sun’s magnetic field that we rely
on has been restricted to the solar surface, i.e., the photo-
sphere. This is extremely unfortunate since the role played
by the magnetic field in the corona is much more impor-
tant than that in the photosphere. As a result, our knowl-
edge of the three-dimensional coronal magnetic field is
largely based on extrapolations from photospheric magne-
tograms using some kind of reasonable physical models.
In the low corona where the plasmaβ (the ratio of gas
pressure to magnetic pressure) is rather small(∼ 0.01),
the magnetic field can be well assumed as free of Lorentz
force in the case of a quasi-static state (i.e.,J × B = 0

whereJ = ∇ × B is the current andB is the magnetic

field). Thus the force-free field model is usually adopted in
coronal field extrapolations.

Owing to the difficulty in directly solving the force-
free equation(∇ × B) × B = 0 which is intrinsically
nonlinear, a variety of numerical codes have been pro-
posed for nonlinear force-free field (NLFFF) extrapola-
tions (e.g., see review papers by Schrijver et al. 2006;
Metcalf et al. 2008; Wiegelmann 2008). For faster con-
vergence and better accuracy over the available codes, the
authors have developed a new extrapolation code called
CESE–MHD–NLFFF (Jiang et al. 2011; Jiang & Feng
2012), which is based on a magnetohydrodynamic (MHD)
relaxation method and an advanced numerical scheme, the
spacetime conservation-element/solution-element (CESE)
method. We have also critically examined our code with
several NLFFF benchmark models and compared the re-
sults with previous joint studies by Schrijver et al. (2006)
and Metcalf et al. (2008), which demonstrates its perfor-
mance. The code has also been extended to application in
spherical geometry and seamless full-sphere extrapolation
for the global corona (Jiang et al. 2012b).

Coronal magnetic flux rope (MFR) is of great inter-
est in the study of solar eruptive activities like filament
eruptions and CMEs. It is believed to be a good candi-
date for the critical pre-eruptive structures that store mag-
netic free energy and helicity and hold cold dense filament
material against gravity, while its instabilities can account
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for triggering and driving eruptions. Observationally, a se-
quence of evidences such as the coronal sigmoid (Rust
& Kumar 1996; Canfield et al. 1999), coronal hot chan-
nels (Zhang et al. 2012; Cheng et al. 2013), and coronal
cavities (Gibson et al. 2006; Régnier et al. 2011) all sug-
gested the existence of pre-eruptive MFR. Theoretically,
MFR is an essential building block of many flare and CME
models (e.g., Forbes & Isenberg 1991; Chen & Shibata
2000; Wu et al. 2000; Török & Kliem 2005; Kliem &
Török 2006). In the coronal field extrapolations, it has
been frequently reported that MFRs consistent with obser-
vations can be reconstructed from relevant photospheric
magnetograms (e.g., Canou & Amari 2010; Cheng et al.
2010; Guo et al. 2010; Jing et al. 2010; Guo et al. 2013;
Jiang et al. 2014a,b). Although many NLFFF codes have
been demonstrated to have the ability to extrapolate MFR,
the reliability has still not been fully tested. Thus, in this
paper, we examine the reliability of our CESE–MHD–
NLFFF code for extrapolating coronal MFR using an an-
alytic force-free model proposed by Titov & Démoulin
(1999, hereafter TD model). The remainder of the paper
is organized as follows. Section 2 briefly describes the
CESE–MHD–NLFFF code. The TD model is described in
Section 3. Extrapolated results are shown in Section 4 and
our conclusions are summarized in Section 5.

2 THE CESE–MHD–NLFFF CODE

In using the MHD relaxation approach for achieving an
NLFFF, one usually starts from a potential field model
matching the vertical component of a magnetogram, then
replaces the transverse fields at the bottom boundary with
those from the vector magnetogram (which is obviously
inconsistent with the potential value, and thus drives the
system to evolve dynamically), and finally lets the MHD
system seek a new equilibrium in which all the other
forces are negligible if compared with the Lorentz force.
Consequently, the Lorentz force must be nearly self-
balancing and the final field can be regarded as the target
solution of magnetic force-freeness. In our CESE–MHD–
NLFFF code, we solve a simplified zero-β MHD model
with a fictitious frictional force, which is used to assure
that a final equilibrium can be reached in a smooth way
(Roumeliotis 1996; Valori et al. 2007). The specific equa-
tion is written in the following form with magnetic splitting

∂ρv

∂t
= (∇× B1) × B − (∇ · B1)B − νρv,

∂B1

∂t
= ∇× (v × B) + ∇(µ∇ · B1) − v∇ · B1,

ρ = |B|2, B = B0 + B1 (1)

where the total magnetic fieldB is split into B0, a po-
tential field matching the normal component of the magne-
togram, andB1, the deviation betweenB andB0. The last
two terms in the induction equation are used to suppress
the numerical errors of magnetic divergence (i.e., a numer-
ically induced magnetic monopole).ν is the frictional co-

efficient andµ is the diffusive speed of the numerical mag-
netic monopole. Their values are given byν = 1/(5∆t)
andµ = 0.4(∆x)2/∆t in the code, respectively, where
∆t is the time step and∆x is the grid size. More details
and a description of the advantages that come from using
the above equations can be found in Jiang & Feng (2012);
Jiang et al. (2012b).

As the above system of equations is just a simplified
subset of the full MHD system, any available MHD code
can be used to solve it. By taking into account the compu-
tational efficiency and accuracy, we prefer to utilize mod-
ern codes for MHD. However, most of the modern MHD
codes are based on the theory of characteristic decompo-
sition of a hyperbolic system, and they are not suitable for
Equation (1), because it is not a hyperbolic system. We thus
select the CESE–MHD scheme (Jiang et al. 2010), which is
free of characteristic decomposition and is very suitable for
Equation (1). Furthermore, the CESE–MHD code has been
successfully applied in solving many relevant problems in
solar physics, e.g., the dynamic evolution of an active re-
gion (AR) using a data-driven MHD model (Jiang et al.
2012a), the global corona structure (Feng et al. 2012a) and
modeling the interplanetary solar wind (Feng et al. 2012b;
Yang et al. 2012).

3 THE TD FLUX ROPE MODEL

The TD flux rope model has gained considerable inter-
est because of its relevance to the structures of solar ARs
and eruptive magnetic field configuration, which has been
demonstrated by many investigations (Roussev et al. 2003;
Török et al. 2004; Török & Kliem 2005; Schrijver et al.
2008; McKenzie & Canfield 2008; Titov et al. 2014).
Basically, the TD model is constructed to simulate a bipo-
lar AR containing a half-buried, toroidal current-carrying
flux rope balanced (or confined) by the overlying arched
near-potential field (as shown in Figure 1). Excessive twist
of the flux rope can trigger its kink instability (Török &
Kliem 2005), and too fast of a decay in the overlying field
with height can trigger the torus instability of the system
(Kliem & Török 2006). With the change in its parameters,
the model can also be used to illustrate different stages of
a twisted sub-photospheric flux tube emergingbodily into
the corona (see figure 7 of Gibson et al. 2006). As shown in
Figure 1, two different configurations, the one with a bald
patch separatrix surface (BPSS), and the one without BPSS
but with a hyperbolic flux tube (HFT), show the stages of
partial and full emergence of flux rope, respectively. The
reader is referred to Titov & Démoulin (1999); Titov et al.
(2014); Valori et al. (2010) for a detailed description of the
model and its parameter settings.

By only using the magnetic field on the model’s bot-
tom boundary to reconstruct the flux rope, the TD model
represents a far more difficult challenge in terms of extrap-
olation than those simple sheared field models (e.g., the
force-free field model by Low & Lou 1990). As examined
by Wiegelmann et al. (2006) and Valori et al. (2010), this
model requires a topological change from the initial poten-
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Fig. 1 Left: basic magnetic configuration of the TD model. The flux rope isshown with red lines, the overlying near-potential arcades
with blue lines, and the grey image shows the normal magnetogram at the bottom.Right: central vertical cross section of TD models
with HFT (top, the 2D field lines form an X-point up in the corona) and with BP(bottom, the 2D field lines form a tangency point with
the photosphere), illustrating two different stages of an emerging flux rope, fully emerged and partially emerged, respectively.
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Fig. 2 Numerical oscillations in the reference data of the TD
model:Jx, Jy andBz along the vertical grid line ofx = −0.03,
y = −0.03 in the High-HFT case.

Table 1 Quality of the magnetograms: normalized flux
ǫflux, force ǫforce, and torqueǫtorque imbalance as defined in
Wiegelmann & Neukirch (2006).

Case ǫflux ǫforce ǫtorque

High-HFT 1.30E–08 3.45E–03 5.48E–03
Low-HFT –3.63E–08 5.88E–03 8.88E–03
No-HFT 5.83E–09 7.29E–03 1.09E–02
BP 2.08E–08 1.46E–02 2.09E–02

tial field to obtain the flux-rope configuration. Valori et al.
(2010) have extensively tested their extrapolation code us-
ing the TD model with a series of parameter sets, which
includes four sets of stable models. They are, respectively,
a Low-HFT case, a High-HFT case, a No-HFT case and a
BP case. An HFT is present in the first two cases, one with
the HFT very close to the photosphere (Low-HFT) and

the other with the HFT reaching significantly into the vol-
ume (High-HFT). The No-HFT case has no HFT present
above the photosphere, hence, its magnetic topology is
much simpler than the first two cases. These three config-
urations have no bald patch at the photosphere because the
toroidal field component is relatively strong. For the BP
case, the flux rope has a left-handed average twist of about
2π, which is close to the twist of the first three equilibria,
but a BPSS is introduced in the resulting field by enlarging
the minor radius of the torus. Here we use exactly the same
reference data from Valori et al. (2010)’s paper with the
same grid resolution of∆ = 0.06 and extrapolation box
of interest,[−3.03, 3.03]× [−4.95, 4.95]× [−0.06, 4.44],
but our actual computational volume is several times larger
than the extrapolation volume of interest to minimize the
numerical boundary effects.

Because the analytical TD solutions are approximately
force-free, Valori et al. (2010) relaxed them to numerical
equilibria using the MHD code of Török & Kliem (2003),
which results in only little change to the geometric shape
of the flux rope but improves the force-freeness for the
models. However, we should point out that these reference
models are still not perfect force-free solutions for the fol-
lowing reasons. Firstly, the data contain strong numerical
oscillations, for example, see Figure 2. Although not obvi-
ous in tracing the field lines which are an integral result of
the field data, the oscillations are obvious when applying
finite difference to the data (for example, calculating the
current density), because the current density is obtained by
finite difference of the field data. These oscillations are a
result of the MHD relaxation from the analytic TD model
by Török & Kliem (2003)’s code. Secondly, the bottom
magnetograms (i.e., the vector field on the bottom bound-
ary of model data) contain a force that cannot be ignored.
To assess the force-free quality of the magnetograms, we
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Fig. 3 Selected field lines for the High-HFT case: shown on left is the reference model and on right is the extrapolation. Contourlines
on the bottom are plotted forBz . The field lines are color-coded by the value of force-free factor α.

Fig. 4 Selected field lines for the No-HFT case. The format is the same as Fig. 3.

calculated the same metricsǫflux, ǫforce andǫtorque as in
Wiegelmann & Neukirch (2006) and Jiang & Feng (2013),
which measure flux, force, and torque imbalance of the
magnetogram respectively. As can be seen in Table 1, the
force-freeness is fulfilled well by the first three cases, but
not that well for the BP case (note that both parameters
ǫforce and ǫtorque are above 0.01), which can cause non-
negligible inconsistency in the NLFFF extrapolation. For
these reasons, a perfect extrapolation does not necessarily

mean reproducing a magnetic field that perfectly matches
the reference model.

4 RESULTS

In the same way as Valori et al. (2010), the extrapolation
results are analyzed within a central region of the extrapo-
lation box by discarding 20 grid layers of its top and lateral
boundaries. The metrics for accessing the quality of the ex-
trapolation are given by Jiang & Feng (2013). Similarly,
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Fig. 5 The reconstructed BPSS (left) and HFT (right) illustrated with a continuous set of field lines (colors of the lines are used for a
good visualization of the structures). They characterize the interface layers separating the flux rope from its ambientfield.

we measure the degree of force-freeness by the current-
weighted (and current-square-weighted) average sine an-
gle between the magnetic field and current,

CWsin ≡

∫
V

JσdV∫
V

JdV
,

C2Wsin ≡

∫
V

J2σdV∫
V

J2dV
,

σ =
|J × B|

JB
. (2)

The solenoidal property is quantified by

〈|fi|〉 =
1

V

∫
V

∇ · B

6B/∆x
dV . (3)

The mean relative error between the extrapolated fieldB

and the original reference fieldBref is,

EM =
1

V

∫
V

|Bref − B|

|Bref |
. (4)

In order to reliably compare the reference and the extrap-
olated fields and their qualities of force-freeness, we ap-
ply a fourth-order finite difference method toB to cal-
culate the currentJ and∇ · B. In addition, to judge the
magnetic topology, we compute the relative errors of the
apex heights of the flux rope axis (FRA) and the HFT
(if present) between the extrapolated and reference fields.
Since the flux rope writhes only slightly out of the plane
x = 0 in the models considered in this paper, both of the
apex heights can be approximately represented as inver-
sion points ofBx(0, 0, z), which is a good approximation
of the poloidal component of the field at the line-symmetric
z axis. Finally, we compute the relative errors of the mag-
netic energy (Emag) between the extrapolated and refer-
ence fields.

The results are given in Table 4. Regarding the met-
rics of force-freeness and divergence-freeness, the extrap-
olation code generates solutions even slightly better than
the reference models for the first three cases. Since both
the models (i.e., the reference model and the extrapola-
tion) are produced by numerical codes, it is suggested that

Table 2 Results for the Metrics of Extrapolations

Figure of merit High-HFT Low-HFT No-HFT BP

CWsin×10
2 2.07/2.59 2.04/2.34 2.25/1.94 5.41/0.81

C2Wsin×10
2 1.04/1.24 0.82/1.08 0.77/0.91 2.50/0.41

〈|fi|〉 × 10
5 4.06/6.52 3.28/6.45 3.52/5.74 12.7/7.57

EM 0.020 0.015 0.016 0.116
HFT apex 5.18% 15.5% ... ...
FRA apex 5.03% 1.38% 0.05% 22.1%
Emag 0.75% 0.98% 1.1% 2.1%

Notes: For the first three metrics, results of the reference mod-
els are also given following those of the extrapolations.

our code performs better in relaxing the magnetic field to a
force-free and divergence-free solution. For the first three
cases, the mean relative errorsEm are only several percent,
demonstrating that the reference models are reproduced
with very high accuracy. The topology parameters, e.g., the
apex of FRA and HFT, are very close to those of the ref-
erence model, except for the HFT apex of the low-HFT
case with a relative error of 15%. This is because in the
low-HFT case the HFT is rather low with only about one
grid point from the bottom, thus the size of the grid is not
sufficiently small to resolve the HFT. The force-freeness
for the BP case is not as good as the first three cases, and
consequently the topology of the extrapolated field also de-
viates considerably from the reference model. This is as
expected because we have shown that the magnetogram of
the BP case is most inconsistent with the force-free con-
straints (Table 1). For all the cases, the energy content is
well recovered with relative errors below several percent.

For a visual inspection of the magnetic configuration,
we show selected field lines of two cases, High-HFT and
No-HFT, in Figures 3 and 4, respectively. The field lines
for all models are traced from the same set of points in
the central cross section of the volume. The field lines in-
clude the flux rope axis, four field lines closely around the
rope axis, one low-lying below the flux rope and two highly
overlying the flux rope. The field lines are color-coded by
the value of force-free parameterα. The side-by-side com-
parison of geometry of the field lines shows little differ-
ence, but the colors of the field lines differ. Ideally for a
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force-free field,α should be constant along a given field
line. However, note that for the reference model, strong
oscillation inα can be seen on any field line. In this re-
spect, our extrapolation code gives a better solution with
the color much more uniform on any field line. Finally, we
show the reconstructed BPSS and HFT in Figure 5.

5 CONCLUSIONS

We have examined the CESE–MHD–NLFFF code by the
TD flux rope model. It is demonstrated that our NLFFF
extrapolation code can reliably reconstruct flux ropes and
their related topology structures (e.g., BPSS and HFT)
from only the bottom boundary data (i.e., the vector mag-
netogram) from the model field. Although the extrapo-
lation is sensitive to the qualities of the vector magne-
tograms, the relative errors with the reference field are
rather small for all the test cases in the paper. Based on the
current test and all the previous tests (e.g., Jiang & Feng
2012, 2013), we are more confident in applying our code
to the realistic coronal field if the magnetogram is prepro-
cessed to fulfill the force-free constraints (Jiang & Feng
2014).
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