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a b s t r a c t

Solar–interplanetary space involvesmany features, such as discontinuities and heliospheric current sheet,
with spatial scales many orders of magnitude smaller than the system size. The scalable, massively
parallel, block-based, adaptive-mesh refinement (AMR) promises to resolve different temporal and
spatial scales on which solar-wind plasma occurs throughout the vast solar–interplanetary space with
even less cells but can generate a good enough resolution. Here, we carry out the adaptive mesh
refinement (AMR) implementation of our Solar–Interplanetary space–time conservation element and
solution element (CESE) magnetohydrodynamic model (SIP-CESE MHD model) using a six-component
grid system (Feng et al., 2007, 2010). The AMR realization of the SIP-CESE MHD model is naturalized
directly in hexahedral meshes with the aid of the parallel AMR package PARAMESH available at
http://sourceforge.net/projects/paramesh/. At the same time, the topology of themagnetic field expansion
factor and theminimum angular separation (at the photosphere) between an open field foot point and its
nearest coronal-hole boundary are merged into the model in order to determine the volumetric heating
source terms. Our numerical results for the validation study of the solar-wind background of Carrington
rotation 2060 show overall good agreements in the solar corona and in interplanetary space with the
observations from the Solar and Heliospheric Observatory (SOHO) and spacecraft data from OMNI.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

It is believed that presently, and in the foreseeable future, three-
dimensional (3D) globalmagnetohydrodynamic (MHD)models are
the only models that can span the enormous distances present in
the corona–interplanetary space, although even generalized MHD
equations are only a relatively low-order approximation to more
complete physics by providing only a simplified description of
natural phenomena in space plasmas.

In quantitatively modeling the solar wind structures and their
interactions with magnetosphere–ionosphere system, 3D global
MHD-based high performance computational models have been
developed by many researches (e.g [1–31]). There are several
global MHD models based on numerous modern well-known
schemes ofmodeling the corona–interplanetary space, to say a few
for reference to a number of such studies: Flux Corrected Trans-
port (FCT) [32,33], Total Variation Diminishing (TVD) schemes
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[13,17,18] and the monotonic upstream scheme for conserva-
tion laws (MUSCL) [34,35], Roe type scheme [8,20,36,37], a mixed
scheme of a finite-difference discretization for the radial and ax-
ial coordinates combined with a pseudospectral method for the
azimuthal coordinate [1,38,39], Essentially Non-oscillatory (ENO)
schemes [40], the Van Leer flux limited schemes and conserva-
tion element and solution element (CESE) [12,15,29,31], and the
so-called Harten–Lax–van Leer (HLL) type [29,41,42]. For survey of
progress made in the numerical space weather modeling from the
Sun to Earth or beyond, we can refer to [43–47].

In a series of papers [12,15,29,31,48–60], Feng and his col-
leagues have developed a 3D MHD model to investigate solar-
terrestrial physical phenomena and space weather study based
on the space–time conservation element and the solution ele-
ment (CESE) method (hereafter called the SIP-CESE MHD model
for brief). In what follows, we mention some results achieved up
to now by the SIP-CESE MHD model.

With the purpose of operational real-time forecasting for ar-
rival times of flare/coronal mass ejection associated shocks in
the vicinity of the Earth, Feng et al. [51] established a one-
dimensional hydrodynamic (HD) shock propagation model by the
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CESE method. The required observational data inputs to this new
one-dimensional CESE-HD model are the shock speed from the
frequency drift rate of type II radio burst in low corona, the du-
ration estimation, and the background solar wind speed for a so-
lar eruptive event. Applying this model to 137 solar events during
the period of February 1997 to August 2002, it is found that their
model could be practically equivalent to the four commonly used
models in forecasting the shock arrival time, namely the Shock
Time of Arrival Model (STOA); the Interplanetary Shock Propaga-
tion Model (ISPM), the Hakamada–Akasofu–Fry (HAFv.2) model,
and the Shock PropagationModel (ISPM). The absolute error in the
transit time from their model is not larger than those of the other
four models for the same set of events.

Feng et al. [15] employed SIP-CESE MHD model within a six-
component overset grid for solar wind simulation. The essen-
tial merits are as follows: (1) the removal of the singularity and
mesh convergence near the poles via the use of the six-component
grid system, (2) the ∇ · B constraint error via an easy-to-use
cleaning procedure by a fast multigrid Poisson solver, (3) the
mitigation of the Courant–Friedrichs–Levy number disparity via
the Courant-number insensitive method, (4) the use of time in-
tegration by multiple time stepping, and (5) the application of
time-dependent characteristic boundary condition at the subsonic
region by limiting themass flux escaping through the solar surface.
In order to produce fast and slow plasma streams of the solar wind,
they include the volumetric heating source terms and momentum
addition by involving the topological effect of the magnetic field
expansion factor fs and the minimum angular distance θb (at the
photosphere) between anopen field foot point and its nearest coro-
nal hole boundary.

A hybrid three-dimensional (3D) MHD model for solar wind
study is proposed by Feng et al. [29] with combined grid sys-
tems and solvers. The computational domain from the Sun to
Earth space is decomposed into the near-Sun and off-Sun domains,
which are respectively constructed with a Yin–Yang overset grid
system and a Cartesian adaptive mesh refinement (AMR) grid sys-
tem and coupled with a domain connection interface in the over-
lapping region between the near-Sun and off-Sun domains. The
space–time CESE method is used in the near-Sun domain, while
the Harten–Lax–Leer method is employed in the off-Sun domain.
The Yin–Yang overset grid can avoid well-known singularity and
polar grid convergence problems and its body-fitting property
helps achieve high-quality resolution near the solar surface. The
block structured AMRCartesian grid can automatically capture far-
field plasma flow features, such as heliospheric current sheets and
shock waves, and at the same time, it can save significant compu-
tational resources compared to the uniformly structured Cartesian
grid.

Feng et al. [31] carried out the adaptive mesh refinement
(AMR) implementation of the SIP-CESE MHD model within a six-
component grid system. By transforming the governing MHD
equations from the physical space (x, y, z) to the computational
space (ξ , η, ζ ) while retaining the conservation form, the AMR
of SIP-MHD model is implemented in the reference coordinates
with the aid of the parallel AMR package PARAMESH available at
http://sourceforge.net/projects/paramesh/. To study the dynamic
evolution of the global corona, Feng et al. [55], Yang et al. [58],
Feng et al. [60] developed a time-dependent MHD model driven
by the daily-updated synoptic magnetograms with the help of the
3D Solar–Interplanetary (SIP) adaptive mesh refinement (AMR)
space–time conservation element and solution element (CESE)
MHD model (SIP-AMR-CESE MHD Model).

By using the 3D SIP-CESE MHD model, Zhou et al. [49,57] and
Zhou and Feng [50] studied the evolution of the Sun–Earth con-
nection coronal mass ejections (CMEs) on 12 May 1997, 4 Novem-
ber, 1997, and three successive CMEs of November 4–5, 1998. The
results proved a relatively satisfactory comparison with the Wind
spacecraft observations, such as southward interplanetary mag-
netic field and large-scale smooth rotation of the magnetic field
associated with the CMEs.

With 3D SIP-CESEMHDmodel, Yang et al. [54,61] simulated the
unusual solar minimum by comparison with multi-satellite obser-
vations, and studied the heating effects of solar wind by compar-
ing the Wentzel–Kramers–Brillouin (WKB) Alfvén wave heating
method, the turbulence heating method and the volumetric heat-
ing method.

By employing the CESE scheme with the full MHD equations,
Jiang et al. [52,53,62] and Jiang and Feng [56,63] presented a new
implementation of the MHD relaxation method for reconstruc-
tion of the nearly force-free coronal magnetic field from a pho-
tospheric vector magnetogram. The bottom boundary condition
is prescribed in a similar way as in the stress-and-relax method,
by changing the transverse field incrementally to match the mag-
netogram, and other boundaries of the computational box are set
by the nonreflecting boundary conditions [53]. Applications to the
well-known benchmarks for nonlinear force-free-field reconstruc-
tion, the force-free equilibria, validate the method and confirm its
capability for future practical application with observed magne-
tograms as inputs.

In summary, the SIP-CESE MHD model developed by Feng
and his colleagues [12,15,29,31,48–54,56–59,64] has the following
merits.

(i) The new implementation of volumetric heating source term
taking the topological effect of magnetic field with the expansion
factor fs and the angular distance θb into consideration, to some
extent, can effectively distinguish the high-speed solar wind from
the low-speed solar wind.

(ii) The combination of the projected normal characteristic
method and the mass flux limit enables the model to repro-
duce reasonable distributions of the plasma density, temperature
and velocity on the solar surface and incorporation of the time-
dependent magnetograms into the model is preliminarily estab-
lished [55,58,60], with emphasis focused on how to preprocess
the observational data, how to solve projected normal character-
istics equations, and how to update the bottom boundary by using
the time-dependentmagnetic field from either observations or the
surface flux transport model.

(iii) The model provides a unified treatment of flow evolution
in space and time and keeps the local and global space–time flux
conservation in a coherent and efficient manner.

(iv) The solution points in SIP-CESE MHDmodel [31,52] are ex-
plicitly given on the mesh nodes, while formerly these points have
to be calculated after setting the grids and the projection of the
CE onto the spatial space has been greatly simplified to a rectan-
gular cuboid. Therefore, the fluxes at the interface of any pair of
conservation elements (CEs) can be efficiently evaluated by means
of non-staggered space–time grids without using Riemann solvers
or other flux models, which significantly reduces the CPU time.

(v) The treatment of time iteration by integrating two half
timesteps into one full timestep leads to low-storage and makes
the scheme suitable for building blocks for adaptive mesh refine-
ment calculations.

(vi) The introduction of six-component grid for the computa-
tional domain from the Sun to Earth or beyond enables us to fit
the spherical surface boundarywith an easy implementation of the
inner boundary conditions, and meanwhile to avoid both coordi-
nate singularities and polar grid convergence. Particularly, it will
be easy to recognize the observation at the lower boundary.

(vii) Through the use of nonsingular transform from the physi-
cal space to the reference space, the quadrangular frustumpyramid
cell for the spherical shell computational domain for solar wind
modeling becomes the conventional rectangular box in the ref-
erence space (ξ , η, ζ ), which can be seen as the usual Cartesian

http://sourceforge.net/projects/paramesh/
http://sourceforge.net/projects/paramesh/
http://sourceforge.net/projects/paramesh/
http://sourceforge.net/projects/paramesh/
http://sourceforge.net/projects/paramesh/


X. Feng et al. / Computer Physics Communications 185 (2014) 1965–1980 1967
coordinate. Consequently, the AMR implementation of the code
follows easily from PARAMESH in Cartesian coordinate. Thus, be-
sides the CESE scheme, many other modern numerical schemes
in Cartesian coordinate such as total variation diminishing (TVD)
scheme and finite volume method (FVM) can be applied directly
to the transformed system. This feature provides us many flexi-
ble alternatives of solving the transformed governing equations in
(ξ , η, ζ ) and then we recover the solution in the physical space
through the transformation to obtain the solar wind solution.

(ix) It should be noted that the same CESE solver can apply
to any coordinate system (such as Cartesian, spherical, cylindrical
coordinates and any other curvilinear coordinates) with only the
difference of the coordinate transformation, and consequently the
solver is highly independent of the grid system.

(x) Based on the CESE MHD model, the new implementation of
theMHD relaxationmethod [52–54,56,59,63] for reconstruction of
coronal magnetic field from a photospheric vector magnetogram
will open a new way for the study of solar active region with the
help of SDO/HMI or SOHO/MDI observations [62].

Corona–interplanetary space involves the presence of different
temporal and spatial scales on which solar wind plasma occurs
throughout the vast solar–interplanetary space, and containsmany
critical features, such as discontinuities and heliospheric current
sheet, that have spatial scales many orders of magnitude smaller
than the system size. The numerical grids are either adapted to
the small scale features in the system, or a brute force approach is
used with as high numerical resolution as possible while fighting
the limits of available computational power. Adaptivemesh refine-
ment (AMR) promises to be capable of better resolving the solution
features of these flowswith even less cells butmay generate a sub-
stantial computational overhead due to the remeshing, refluxing at
coarse–fine interfaces, and guardcell filling.

In the present paper, the AMR realization of SIP-CESE MHD
model is naturalized directly in hexahedral meshes with the
aid of the parallel AMR package PARAMESH available at http:
//sourceforge.net/projects/paramesh/. First, the governing equa-
tions for solar wind plasma is described and the CESE method in
hexahedralmeshes is given for self-consistence. Then, themodel is
validated by the numerical study of the solar-wind background of
Carrington rotation (CR) 2060 with comparison in the solar corona
and in interplanetary space with SOHO observation and spacecraft
data from OMNI. Finally, a conclusion is made.

2. SIP-CESE MHDmodel

The basic equations governing the solar wind evolution are the
set of the MHD equations in the conservative form given [15,31]
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+ ∇ · ρu = 0

∂ρu
∂t

+ ∇ ·


ρuu + I


p +

1
2
B2
1 + B1 · B0


− B1B1 − B1B0 − B0B1


= j0 × B0 + ρ [g − � × (� × r)] − 2ρ� × u + Sm,

∂e1
∂t

+ ∇ ·


u

e1 + p +

1
2
B2
1 + B1 · B0


− (u · B1)(B1 + B0)


= −B1 ·

∂B0

∂t
+ E · j0

+ ρu · [g − � × (� × r)] + Qe + u · Sm,

∂B1

∂t
+ ∇ · (uB − Bu) = −

∂B0

∂t
(1)
with

E = u × B, j0 = ∇ × B0, and e1 =
1
2
ρu2

+
p

γ − 1
+

1
2
B2
1

where e1 corresponds to themodified total energy density consist-
ing of the kinetic, thermal, and magnetic energy density (written
in terms of B1). A factor of 1/

√
µ is included in the definition of B,

and B0 is constant in time.
Here, ρ is themass density, u = (u, v, w) are the velocities in x,

y, and z directions, p is the thermal pressure, and B = B0 + B1 de-
notes the total magnetic field consisting of the time-independent
potential magnetic field B0 and its time-dependent derived part B1
by employing the technique of splitting the magnetic field as done
by Tanaka [17] and [15,31] to improve the accuracy of the simu-
lated magnetic field. t and r are time and position vector originat-
ing at the center of the Sun, g = −

GM
r3

r is the solar gravitational
force, � is the solar angular speed and γ is the ratio of specific
heats. ρ, u, p, B, r, t , and g are normalized by the characteristic val-

ues ρS, a0, ρSa20,


ρSa20, RS, RS/a0, and a20/RS , where RS is the so-
lar radius, ρS and a0 are the density and sound speed at the solar
surface. The solar rotation is considered in the present study with
angular velocity |�| = 2π/26 radian day−1 (here normalized by
a0/RS). For γ , similar to that of Wu et al. [65], a variable polytropic
index is used

γ =

 1.05, r/RS ≤ 5
1.05 + 0.03(r/RS − 5), 5 ≤ r/RS ≤ 22

1.56, r/RS > 22.

In the MHD model, we apply the techniques of adding both
Powell’s source terms −∇ · B(0, B, v · B, v)T [20] and the diffusive
control term ∇(ν∇ · B) [29,31,66–68] to deal with the divergence
of the magnetic field [66,69,70]. Here, following Feng et al. [29,31],
ν = 1.3( 1

∆x2
+

1
∆y2

+
1

∆z2
)−1, where ∆x, ∆y, and ∆z are grid spac-

ings in Cartesian coordinates. Sm and Qe stand for the momentum
and energy source terms, which are responsible for acceleration
and heating of the solar wind and are given as follows [15]:
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Here, r is the heliocentric distance, Q1,Q2 and LQ1 , LQ2 are the in-
tensity and decay height of heating, and T is the temperature,
M and LM are the intensity and the decay height of the momen-
tum addition. A Spitzer type thermal conduction has been added
in the third term of Qe and we choose ξ = 5εp = 1.6 ×

10−12 J m−1 s−1 K−7/2 according to Endeve et al. [71]. Here, the
constant values of Q1, Q0 andM0 are 1.5 × 10−9 J m−3 s−1, 1.18 ×

10−7 J m−3 s−1 and 7.9 × 10−14 N m−3, respectively. LQ1 , LQ2 and
LM are set to be 1 RS . Here, we assume that Q2 = Q0Ca,M = M0Ca,

where Ca = C ′
a/max(C ′

a) with C ′
a =


5.8−1.6e[1−(θb/8.5)3]

3.5

(1+fS )2/7
. The ex-

pansion factor [72,73] reads fS =


RS
RSS

2 BRS
BRSS

, where BRS and BRSS

are the radial magnetic field strength at the solar surface and at
the solar source surface RSS = 2.5RS . This heating coefficient Ca
is a function of two coronal parameters: flux tube expansion fac-
tor (fS), and the minimum angular separation θb between an open
field foot point and its nearest coronal hole boundary [72,73]. This
consideration is motivated by the fact that solar wind speed is in-
versely related with the expansion factor fS and that high speed
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wind from the center of a coronal hole has large θb and low speed
wind from the hole boundary has a small θb.

The solar wind evolution is calculated in a reference frame
of heliographic coordinates corotating with the Sun. For this
reference coordinate system we use (r, θ, φ) for the position of a
point in solar–interplanetary space and (x, y, z) is used to express
its corresponding Cartesian coordinates. Sometimes, the analysis
of computational results is carried out in the coordinate system at
rest to compare with the observations.

3. Cese solver modified space–time conservation element and
the solution element method

The mth (m = 1, 2, . . . , 8) equation of the above solar wind
MHD equations (1) can be written as:

∂um

∂t
+

∂ fm
∂x

+
∂gm
∂y

+
∂hm

∂z
(≡ ∇ · qm) = ηm (3)

where qm = (fm, gm, hm, um), um, fm, gm, hm and ηm are the mth
component of U, F, G, H and η, respectively, and U, F,G,H and η
are solution vector, flux functions in the x−, y−, z− directions and
source terms in Eq. (1). Let (x, y, z, t) be the coordinates of a four-
dimensional Euclidean space E4 and ∇ = (∂x, ∂y, ∂z, ∂t) stands for
the usual gradient in four dimensional Euclidean space. By using
Gauss’ divergence theorem in E4, it can be shown that Eq. (3) is
equivalent to the following integral equations:

S(V )

qm · dS =


V

ηmdV . (4)

Here S(V ) is the boundary of an arbitrary space–time regionV in E4,
and qm · dS is the space–time flux qm leaving the region V through
the surface element dS. Eq. (4) states that the total space–time
flux of qm leaving V through its boundary S(V ) is equal to the
integration of the source term ηm over the space–time region V .

Keep in mind that Powell’s source terms −∇ · B(0, B,u · B,u)T

and the diffusive control term ∇(ν∇ · B) can be absorbed into
the flux terms (fm, gm, hm) and source term ηm as done by Feng
et al. [31] without changing the form of Eq. (3). All the arguments
of this section and the subsequent sections apply.

Based on the above integral formulation in four dimensional
Euclidean space, the space–time conservation element and so-
lution element (CESE) method, has been originally proposed by
Chang and co-workers [74–78]. Different substantially from other
well-established methods, CESE is not an incremental improve-
ment of a previously existing computational fluid dynamics one.
The CESEmethod’s nontraditional characteristics contain a unified
treatment of space and time, the introduction of conservation el-
ement and solution element, and a novel shock capturing strategy
without using Riemann solvers. Note that conservation elements
are nonoverlapping space–time subdomains introduced such that
(i) the computational domain is the union of these subdomains and
(ii) space–time flux conservation can be ensured over each of them
and also over the union of any combination of them. In contrast,
each solution element is a space–time subdomain, in which any
physical flux vector is approximated by using simple smooth func-
tions. Usually, a conservation element does not coincide with a so-
lution element. Thismethod is distinguished by the simplicity of its
conceptual basis—a unified treatment of flux conservation in space
and time.

It should be noted that one of the most important features of
the CESE method is to employ an integral form of space–time flux
conservation as the cornerstone for its numerical discretization.
However, one derives the conventional finite-volume methods
based onReynolds transport theorem [79], inwhich space and time
are treated separately. By Reynolds transport theorem [79], using
Gauss’s law in three-dimensional space, the integration form of Eq.
(3) can be written as

∂

∂t


Vijk

umdv +


S(Vijk)

(fmnx + gmny + hmnz)ds =


Vijk

ηmdv (5)

where dv and ds are the volume and surface element of a fixed
spatial control volume Vijk with the centroid indexed by (i, j, k)
and n is a unit vector normal to the surface of the control volume.
Alternatively, integrate Eq. (5) with respect to time from t1 to t2 to
arrive at

Vijk
umdv |

t2
t1

=

 t2

t1


−


S(Vijk)

(fmnx + gmny + hmnz)ds +


Vijk

ηmdv


. (6)

As such, the conservation laws state that the rate of change of the
total amount of a substance contained in a fixed spatial control
volume Vijk is equal to the combination of the following two
factors: (i) the flux of that substance across the boundary S(Vijk)
of the control volume Vijk, and (ii) the integration of the source
term over the fixed spatial domain. The conventional finite volume
methods concentrate on the evaluation of the right side of Eq.
(6). The left hand side of Eq. (6) is usually discretized by a finite
difference method such as the Runge–Kutta methods. Due to the
above two factors, the fractional step (or splitting) methods resort
to strongmeasurements of numerically segregating the two factors
and treating them in a sequential manner. The numerical fluxes,
(fmnx + gmny + hmnz), at the quadrature point of each face of
cell Vijk are determined from the solution of a Riemann problem.
Given the left and right inter-face solution states, UL and UR, an
upwind numerical flux is evaluated by solving a Riemann problem
in the direction defined by the normal to the face. This is, the finite
volumemethod evaluates the change of the conservative values of
all control volumes by integrating their interface or edge fluxes.
From the point view of programming it consists of two steps,
calculating fluxes at every interface and gathering interface fluxes
for every control volume. Therefore, the data structure is designed
as having two primary arrays, one for control volumes, another for
faces, with a bi-directional reference between control volumes and
faces.

As pointed out by Zhang et al. [78] and Yu and Chang [80],
this separate treatment of space and time prescribes a restriction
on the space–time geometry of finite volumes and, as a result,
classical Riemann problems arise naturally in the calculation of
flux evaluation across an interface. In contrast, due to its unified
treatment of space and time, CESE’s flux conservation formulation
allows a choice of the space–time geometry of CEs that avoids solv-
ing Riemann problems. This fundamental difference between the
conventional finite-volumemethods and the space–time flux con-
servation formulation unique to the CESE method has been clari-
fied by Zhang et al. [78] Yu and Chang [80].

In what follows we show how to use the CESE method to cal-
culate U = (u1, u2, . . . , u8) and its derivatives at a new time level
if these values at previous time step are given. The details about
the Space–Time CESE method can be found in [78,81,82]. For com-
pleteness, a brief discussion of this extended CESE method is pro-
vided for hexahedral meshes in spherical shell geometry suitable
to solar-terrestrial simulation.

3.1. CEs and SEs in a six-component grid system

In this part, we introduce conservation element and solution
element in spherical geometry. Feng et al. [15] propose a composite
mesh that consist of six identical component meshes to envelop a
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a b c

Fig. 1. Grid elements of six-component grid structure for the 3-D CESE solver: (a) one-component grid at solar surface, (b) piling up in the corona, and (c) representative
grid cell in the x–y–z space.
spherical surface with partial overlap on their boundaries (Fig. 1).
Each component grid is a low latitude spherical mesh, which is
defined by

π

4
− δ 6 θ 6

3π
4

+ δ


∩


3π
4

− δ 6 φ 6
5π
4

+ δ


(7)

where δ is determined by the grid spacing and layers of guardcells
entailed for the minimum overlapping area of two grid sizes (δ =

2∆θ ). Each component is confined by the same region as that in Eq.
(7) but in different coordinates. Fig. 1a shows the grid structure on
the solar surface or spherical inner boundary. Meanwhile, expand
the spherical surface at different radial distances by defining the
radial variation. In this paper, we use r(1) = 1RS, r(i + 1) =

r(i)+∆r(i)with∆r(i) = ∆θ ×r(i). In both θ and φ directions, the
grid points are even spaced such that∆θ = ∆φ. In thisway, for the
r direction, the grid spacing ∆r in the r direction is always around
r∆θ and r sin θ∆φ (∆θ is already chosen to be equal to ∆φ) so
that each grid cell is always approximately a cube. The sin θ term
varies from 1 to 1/

√
2 within the 6 grid components, which shows

that avoiding the singularity of the spherical grid indeed results in
more regular cells. Then three-dimensional spatial computational
domain is divided into non-overlapped convex hexahedrons and
any two neighboring hexahedrons share a common surface. Fig. 1b
and c show one component of hexahedrons and how to construct
a 3-D grid structure by extending the position of spherically
allocated grids outward from the inner boundary. For detail of grid
structure and grid spacing, one may refer to Feng et al. [15].

After the establishment of 3D spatial grid structure, we are in
a position to define conservation element and solution element
in space–time domain. Q (marked by a circle) is the centroid
of a typical hexahedron B1B2B3B4B5B6B7B8. Each of the central
hexahedron’s six neighboring hexahedrons is arbitrarily assigned
an identification index ℓ = 1, 2, . . . , 6. Also, the centroid of the
ℓth neighbor will be denoted by Aℓ. As an example, the central
hexahedron B1B2B3B4B5B6B7B8 and its 1st neighbor is separated by
the quadrilateral B1B2B3B4 in Fig. 1c.

Given any ℓ = 1, 2, . . . , 6, a triangle is formed by the point Aℓ

and the two end points of any of the edges of the interface that
separates the central hexahedron and its ℓth neighbor. Each of the
triangles so formedwith the same ℓ is arbitrarily assigned an index
kℓ = 1, 2, 3, 4, and denoted by △(kℓ, ℓ). As an example, △A1B1B2,
△A1B2B3,△A1B3B4, and△A1B4B1 depicted by Fig. 1c have the same
ℓ = 1. Therefore theymay be denoted by△(1, 1),△(2, 1),△(3, 1),
and △(4, 1) respectively.

Point Q and the two end points (say points B1 and B2) of any
of the twelve edges of the central hexahedron form a triangle.
Each of twelve triangles so formed is arbitrarily assigned an index
j = 1, 2, . . . , 12 and denoted by △(j).
The points A1, B1, A2, B2, A3, B3, A4, B4, A5, B5, A6, B6, B7 and
B8 form a 24-faced polyhedron B1B2B3B4B5B6B7B8A1A2A3A4A5A6.
The centroid of the 24-faced polyhedron is referred to as the
solution point associated with point Q . Note that the above 24-
faced polyhedron hereafter is denoted by V (24) and the centroid
of V (24) is denoted by Q ∗ and marked by a cross in Fig. 1c.

Given any ℓ = 1, 2, . . . , 6, points Q and Aℓ and the vertices of
the quadrilateral interface that separates the central hexahedron
and its ℓth neighbor are the vertices of a octahedron. This
octahedron hereafter is denoted by V8(ℓ). As an example, Q , A1,
B1, B2, B3 and B4 form a octahedron denoted by V8(1).

In the space–time computational domain, againwe assume that
t = n∆t at the nth time level (n = 0, 1

2 , 2,
3
2 , . . .). Also, for a

given n > 0, let Q ,Q ′, and Q ′′ (not shown), respectively, be the
points on the nth, (n −

1
2 )th, and (n +

1
2 )th time levels with point

Q being their common spatial projection. Other space–time mesh
points such as (i) Q ′∗ and Q ′′∗, (ii) Bk, B′

k, and B′′

k , k = 1, 2, . . . , 8;
and (iii) Aℓ, A∗

ℓ, A
′

ℓ, and A′∗

ℓ , ℓ = 1, 2, . . . , 6, are defined similarly.
Because geometric objects in E4 generally are difficult to visualize,
they will be described analytically in the following discussions.

A ‘‘plane’’ in E4, by definition, is a subspace of E4 defined by a
linear equation i.e.,

a1x + a2y + a3z + a4t = a0, a21 + a22 + a23 + a24 ≠ 0, (8)

where ak, k = 0, 1, 2, 3, 4, are constants. As a result, a hyperplane
in E4 is a three-dimensional subspace. Note that a hyperplane
segment, by definition, is a bounded region of a hyperplane. A
hyperplane of type I , denoted by Γ (V ; tc), is formed by all the
points (x, y, z, t) that satisfy the conditions t = tc and (x, y, z) ∈

V , where tc is a constant and V denotes a 3D spatial region.
In contrast, a hyperplane segment of type II , denoted by Γ (S;

t−, t+), is formed by all the points (x, y, z, t) that satisfy the con-
ditions (x, y, z) ∈ S and t− ≤ t ≤ t+, where S denotes a spatial
plane segment and t− and t+(t− < t+) are constants. Note that ev-
ery point (x, y, z) on the spatial plane segment S satisfies a linear
equation of the form

c1x + c2y + c3z = c0, c21 + c22 + c23 ≠ 0,

where ck, k = 0, 1, 2, 3, are constants. Thus every point (x, y, z, t)
on Γ (S; t−, t+) also satisfies a special form of Eq. (8).

In addition to the above two types of hyperplanes, we shall
also consider ‘‘hypercylinder’’ in E4. A hypercylinder, denoted by
Λ(V ; t−, t+), is formed by all the points (x, y, z, t) that satisfy the
conditions (x, y, z) ∈ V and t− ≤ t ≤ t+, where V is a 3D spatial
region and t− and t+(t− < t+) are constants.

With the above preliminaries, SE(Q ∗), the solution element of
point Q ∗, i.e., the point that lies on the nth time level and has Q ∗

as its spatial projection, is defined to be the union of Γ (V (24); tn)
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and Γ (∆(j); tn−1/2, tn+1/2), j = 1, 2, . . . , 12, and their immedi-
ate neighborhoods. Moreover, the six Basic Conservation Elements
(BCEs) of point Q, denoted by CEℓ(Q ), ℓ = 1, 2, · · · , 6, are defined
to be the hypercylinders Λ(V8(ℓ); tn−1/2, tn), ℓ = 1, 2, . . . , 6, re-
spectively. In addition, the Compound Conservation Element (CCE)
of point Q , denoted by CE(Q ), is defined to beΛ(V (24); tn−1/2, tn),
i.e., the union of the above six BCEs.

We begin with the following preliminaries:
(a) Let Γ be a hyperplane segment lying within SE(Q ∗). Let A be

the area of Γ , (xc, yc, zc, tc) be the coordinates of the centroid of
Γ , and n be a unit vector normal to Γ . Then it can be shown that

Γ

q∗

m · dS = q∗

m(xc, yc, zc, tc;Q ∗) · An

where dS = dσn with dσ being the area of a surface element on
Γ . The definition of q∗

m(xc, yc, zc, tc;Q ∗) is given below.
(b) Let V denote the volume of V (24). Because the unit outward

normal vector (outward from the interior of CE(Q )) of this face is
(0, 0, 0, 1), its surface vector (i.e., the unit outward normal vector
multiplied by the area) is (0, 0, 0, V ).

(c) Let V ℓ and (xℓ, yℓ, zℓ), respectively, denote the volume and
the spatial coordinates of the centroid of any V8(ℓ). Then the
surface vector, and the coordinates of the centroid of Γ (V8(ℓ);
tn−1/2), respectively, are (0, 0, 0, −V ℓ) and (xℓ, yℓ, zℓ, tn−1/2).

(d) Let Sℓ
kℓ

, (nℓ
kℓx

, nℓ
kℓy

, nℓ
kℓz

), and (xℓ
kℓx

, yℓ
kℓy

, zℓ
kℓz

), respectively,
denote the area, the spatial unit outward normal, and the coord-
inates of the centroid of any △(kℓ, ℓ). Then the surface vector, and
the coordinates of the centroid of the side of face Γ (△(kℓ, ℓ);

tn−1/2, tn), respectively, are (∆t/2)Sℓ
kℓ

(nℓ
kℓx

, nℓ
kℓy

, nℓ
kℓz

, 0) and (xℓ
kℓ

,

yℓ
kℓ

, zℓ
kℓ

, tn − ∆t/4).
By using the information presented in items (a), (b), (c) and

(d), the flux of q∗
m leaving the other faces of CE(Q ) can be evaluated

in terms of the independent marching variables at points A′∗

ℓ , ℓ =

1, 2, . . . , 6.

3.2. Calculation of (um)Q∗

This subsection is devoted to the calculation of (um)Q∗ by solv-
ing MHD equations on conservation element and solution ele-
ment defined above. Following Chang’s original approach [74],
inside each SE the flow variables are assumed smooth, and are
represented by the first-order Taylor series. For any (x, y, z, t) ∈

SE(Q ∗), um(x, y, z, t), fm(x, y, z, t), gm(x, y, z, t) and hm(x, y, z, t)
are approximated by the following formulae for u∗

m(x, y, z, t;Q ∗),
f ∗
m(x, y, z, t;Q ∗), g∗

m(x, y, z, t;Q ∗) and h∗
m(x, y, z, t;Q ∗):

u∗

m(x, y, z, t;Q ∗) = (um)Q∗ + (umx)Q∗(x − xQ∗)
+ (umy)Q∗(y − yQ∗)
+ (umz)Q∗(z − zQ∗) + (umt)Q∗(t − tn) (9)

z∗

m(x, y, z, t;Q ∗) = (zm)Q∗ + (zmx)Q∗(x − xQ∗)
+ (zmy)Q∗(y − yQ∗)
+ (zmz)Q∗(z − zQ∗) + (zmt)Q∗(t − tn) (10)

umξ =
∂um

∂ξ
, zmξ =

8
ℓ=1

zmℓ uℓξ , zmℓ =
∂ zm

∂uℓ

, (11)

q∗

m(x, y, z, t;Q ∗) ≡ (f ∗

m(x, y, z, t;Q ∗), g∗

m(x, y, z, t;Q ∗),
h∗

m(x, y, z, t;Q ∗), u∗

m(x, y, z, t;Q ∗)) (12)

for m = 1, 2, . . . , 8. Here, zm stands for fm, gm or hm, and ξ de-
notes x, y, z or t . Here, (zmℓ)8×8 denotes the Jacobian matrix of z,
which is given in Appendix of Feng et al. [12]. (xQ∗ , yQ∗ , zQ∗ , tn) is
the space–time coordinate of point Q ∗. Moreover, we assume that,
for any (x, y, z, t) ∈ SE(Q ∗), and any m = 1, . . . , 8,

∂u∗
m(x, y, z, t;Q ∗)

∂t
+

∂ f ∗
m(x, y, z, t;Q ∗)

∂x

+
∂g∗

m(x, y, z, t;Q ∗)

∂y
+

∂h∗
m(x, y, z, t;Q ∗)

∂z
= ηm. (13)

Obviously, we have

(umt)Q∗ = (ηm)Q∗ − (fmx)Q∗ − (gmy)Q∗ − (hmz)Q∗

= (ηm)Q∗ −

8
ℓ=1

[(fmℓ)Q∗(uℓx)Q∗

+ (gmℓ)Q∗(uℓy)Q∗ + (hmℓ)Q∗(uℓz)Q∗ ]. (14)

Thus, the space–time flux conservation, Eq. (4), can be approxi-
mated by its discrete counterpart on conservation element:

S(CE)
q∗

m · dS =


CE

ηmdV (15)

i.e., the total flux of q∗
m leaving CE(Q ) through its boundary van-

ishes. Then, with the aid of the above preliminaries, substituting
Eqs. (9) and (14) into Eq. (15), we obtain the following equation

(um)nQ∗ −
∆t
2

η(um)nQ∗ =


6

ℓ=1

Rℓ
m


/V (16)

which is the discretized form of the governing equations (3) for the
solar wind model. Here

Rℓ
m = V ℓ

[(um)
n−1/2
A∗
ℓ

+ (xℓ
− xA∗

ℓ
)(umx)

n−1/2
A∗
ℓ

+ (yℓ
− yA∗

ℓ
)(umy)

n−1/2
A∗
ℓ

+ (zℓ
− zA∗

ℓ
)(umz)

n−1/2
A∗
ℓ

]

−
∆t
2

4
kℓ=1

Sℓ
kℓ


nℓ
kℓx[(fm)

n−1/2
A∗
ℓ

+ (xℓ
kℓ − xA∗

ℓ
)(fmx)

n−1/2
A∗
ℓ

+
∆t
4

(fmt)
n−1/2
A∗
ℓ

+ (yℓ
kℓ − yA∗

ℓ
)(fmy)

n−1/2
A∗
ℓ

+ (zℓ
kℓ − zA∗

ℓ
)(fmz)

n−1/2
A∗
ℓ

]


−

∆t
2

4
kℓ=1

Sℓ
kℓ


nℓ
kℓy[(gm)

n−1/2
A∗
ℓ

+ (xℓ
kℓ − xA∗

ℓ
)(gmx)

n−1/2
A∗
ℓ

+
∆t
4

(gmt)
n−1/2
A∗
ℓ

+ (yℓ
kℓ − yA∗

ℓ
)(gmy)

n−1/2
A∗
ℓ

+ (zℓ
kℓ − zA∗

ℓ
)(gmz)

n−1/2
A∗
ℓ

]


−

∆t
2

4
kℓ=1

Sℓ
kℓ


nℓ
kℓz[(hm)

n−1/2
A∗
ℓ

+ (xℓ
kℓ − xA∗

ℓ
)(hmx)

n−1/2
A∗
ℓ

+
∆t
4

(hmt)
n−1/2
A∗
ℓ

+ (yℓ
kℓ − yA∗

ℓ
)(hmy)

n−1/2
A∗
ℓ

+ (zℓ
kℓ − zA∗

ℓ
)(hmz)

n−1/2
A∗
ℓ

]


(17)

where ℓ = 1, 2, . . . , 6, for flux conservation contributed from six
neighboring CEs. Using the Eqs. (16) and (17) given above, it can be
seen clearly that, for the current 3D case, the only independent dis-
crete variables associated with the space–time solution point Q ∗

are (um)Q∗ , (umx)Q∗ , (umy)Q∗ , (umz)Q∗ , m = 1, . . . , 8. We can see
that at time step n−1/2 if the solution variables (U)

n−1/2
A∗
ℓ

and their

first-order spatial derivatives

(Ux)

n−1/2
A∗
ℓ

, (Uy)
n−1/2
A∗
ℓ

, (Uz)
n−1/2
A∗
ℓ


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are known, the solution variables Un
Q∗ at the nth time step can be

obtained by solving Eq. (16) with Newtonian solvers [12,15].
In order to accomplish the CESE solver, we have to update the

solution variables’ gradients Umx, Umy and Umz on a solution point
Q ∗, which are obtained by using a reweighting scheme [12,15,78].

In order to realistically generate the structured solar wind, we
specify the inner initial boundarymagnetic field with the observed
line of sight photospheric magnetic field data. The observed
photospheric magnetic field from the Wilcox Solar Observatory
(WSO) at Stanford University is used to deduce a 3-D global
potential magnetic field as initial magnetic input. Parker’s solar
wind flow provides the initial distributions of the plasma density
ρ, gas pressure p, and the plasma velocity u. Here, the initial
solar surface temperature and number density are set to be 1.3 ×

106 K and 1.5 × 108 cm−3, respectively. Then, our code is run in
time-relaxation manner until a steady-state equilibrium between
flow and magnetic fields is achieved by satisfying some error
criteria [12].

The calculations are performedbetween1RS (i.e., the base of the
corona) and 328 RS . At the lower boundary, basing on the observed
line-of-sight measurements of the photospheric magnetic field
from Wilcox Solar Observatory (WSO) at Stanford University, we
specify the radial component of themagnetic field. The initial solar
surface temperature and number density are set to be 1.3 × 106 K
and 2.0× 108 cm−3, respectively. We employ the time-dependent
inner boundary condition to limit the mass flux escaping through
the solar surface and adjust the distribution of temperature,
number density and speed on the solar surface [15,34,83]. Then,
the code is initialized by using potential magnetic field based on
the line-of-sightmeasurements of the photosphericmagnetic field
for the CRs of interest and Parker solar wind solution. Finally,
our model is run in time-relaxation method until a dynamic,
steady-state equilibrium is achieved. In fact, the same procedure
of boundary conditions and initial conditions given in Section 6 of
Feng et al. [15] is used in the present paper.

4. Block-structured hexahedral adaptive mesh refinement

In this article, we carry out our AMR implementation with
the help of PARAMESH publicly available at http://sourceforge.
net/projects/paramesh/, which is a package designed to ease the
task of adding parallelization and dynamic, adaptive mesh re-
finement (AMR) [84]. Previously we have implemented the adap-
tive mesh refinement (AMR) implementation of SIP-CESE MHD
model [12,15,31] under six-component grid system, with the aid
of PARAMESH through a curvilinear coordinate transformation.
Here, instead of using the coordinate transformation we employ a
solution-adaptive technique proposed by Sun and Takayama [85].
A hexahedral grid structure for three dimensions has been estab-
lished by Sun and Takayama [85], where every cell points to its six
faces, and every face points to its twoneighboring cells, as shown in
Fig. 2. Every face is uniquely oriented such that its two neighboring
cells can be identified by left and right, according to the orientation
as shown in Fig. 2b. The six faces of each cell are ordered by the
following rules: 1) the same orientation must be assigned to two
opposite faces; 2) the orientations of three pairs of opposite faces
must constitute a local right-handed coordinate frame inwhich six
faces is unambiguously ordered. These definitions and neighboring
information are sufficient to be required by establishing the CESE
solver in Eqs. (16) and (17).

As pointed out by Sun and Takayama [85], these strict defini-
tions in the data structure reduce the complexity of the unstruc-
tured adaptive solver without losing generality, and do not require
additional memory to store the definitions, but store the neighbor-
ing cell information following the rules.
In the AMR strategy [84,86], a subgrid will be created in regions
of its parent grid needing higher resolution, and each grid evolves
as a separate initial boundary value problem. The whole grid
hierarchy evolves recursively, and organized in a tree structure. As
usual, in the refinement procedure, the one-level-difference rule
that no two neighboring cells differ by more than one refinement
level is obeyed. That is, once a cell cannot be refined due to the level
difference between itself and one or a few neighboring cells, the
neighboring cells are refined no matter what values of their refine
and coarse are. A cell to be refined is divided into eight children as
shown in Fig. 2c.

The physical values at newly generated cells in the adaptation
procedure are determined by those on the old mesh according to
the method proposed by Sun and Takayama [85]. That is, in the
refinement procedure the conservative variables of new children
are linearly interpolated from those of their parent, while in
coarsening procedure flow variables of a coarsened parent cell are
the volume-weighted average of these of its deleted children. This
kind of interpolation and the weighted average for new cells has
been proven to preserve conservation [87].

With the above orientation or ordering of cells and interpola-
tion during the refining and coarsening process, PARAMESH can
be easily accommodated to manage our AMR grid system such
that we can directly use most of the default operations provided
by PARAMESH, such as the refining or coarsening of the blocks,
prolongation, and restriction. Therefore, the data transferring and
guard cell filling between blocks can be automatically accom-
plished by the PARAMESH package without large modification.
However, the ghost cell filling of the edges of each of the six com-
ponents is achieved as follows. On the overlapping area between
two components, solution values at the ghost cell centers of one
component grid are determined by the standard Lagrange inter-
polation from its neighboring component. The grid layer buffer
δ is suitably chosen for the overlapping region to perform such
interpolation. In this paper, δ = 2∆θ is chosen such that the
overlapping region between two components contains at least
two layers of grid cells of each other to guarantee that none of
the neighboring component’s ghostcell centers is used in the in-
terpolation stencil. For instance, a ghost cell center G has coor-
dinates (xG, yG, zG) in its corresponding neighboring component,
which does not necessarily coincide with any mesh cell center of
the neighboring component, while the ghost cell center G’s co-
ordinates can be denoted by (x′

G, y
′

G, z
′

G) when seen as a point
in the ghostcell associated component. The interpolated value um
at the point G(xG, yG, zG) in the neighboring component is com-
puted by um(G) =

2
k=0

2
j=0
2

i=0 P
G
i (x)PG

j (y)PG
k (z)um(xi, yj, zk),

where PG
l (ξ) is the Lagrange interpolating polynomial PG

l (ξ) =2
k=0,k≠l

ξG−ξk
ξl−ξk

with ξ being x, y or z and um the mth component
of the solution vector U. The twenty-seven (33) nodes with coordi-
nates (xi, yj, zk) (i, j, k = 0, 1, 2) denote the inner mesh cell cen-
ters of the very neighboring component that are closest to G, and
these values um(xi, yj, zk) (i, j, k = 0, 1, 2) are already known in
the neighboring component. Afterwards, through the transforma-
tion between components,U(G) = (u1(G), . . . , u8(G)) at the point
G(xG, yG, zG) is converted to U′(x′

G, y
′

G, z
′

G) in the ghostcell associ-
ated component, and U′(x′

G, y
′

G, z
′

G) is used to fill the value at the
ghost cell center G(x′

G, y
′

G, z
′

G). The transformation of velocity and
magnetic field vectors in the solution vector U between different
components has been provided in detail by [15]. This kind of in-
terpolation with the third order accuracy works well in practice
[29,31,60] for our second order accurate CESE solver.

Initially, the computational domain in every component is di-
vided into 14×4×4 blocks with each block consisting of 8×8×8
cells with one layer of guardcell included. These correspond to
Nθ = Nφ = 25 and ∆θ = π/48 by defining grid points on

http://sourceforge.net/projects/paramesh/
http://sourceforge.net/projects/paramesh/
http://sourceforge.net/projects/paramesh/
http://sourceforge.net/projects/paramesh/
http://sourceforge.net/projects/paramesh/
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a b

c

Fig. 2. AMR strategy for grid adaptation: (a) every cell stores its location and points to six faces; (b) every face stores the locations of its four vertices and points to two
neighboring cells; and (c) a parent cell is divided into eight children.
Source: Adopted from Sun and Takayama [85].
each component in physical space as θ ℓ
j = θmin + j∆θ, j = 0,

1, . . . ,Nθ + 1, φℓ
k = φmin + k∆φ, k = 0, 1, . . . ,Nφ + 1 and

∆θ = (θmax − θmin)/(Nθ − 1), ∆φ = (φmax − φmin)/(Nφ − 1),
where Nθ and Nφ are the mesh numbers of the latitude and longi-
tude, respectively. θmin =

π
4 , θmax =

3π
4 , φmin =

3π
4 , φmax =

5π
4 .

The innermost region is set on the solar surface at 1 RS and the out-
ermost region on the sphere at 328 RS .

Here, all the ranks are classified into six groups, each of which
corresponds to one component grid system and deals with the
same kind of grids, basic equations, and numerical task. The block
size is set to be 8 × 8 × 8 cells, with one layer of guard cells
included. Due to the importance of the topology of heliospheric
current sheet, only the curl of the magnetic field is used as our
refinement strategy to capture the current sheet.We strictly follow
Feng et al. [31] by setting the thresholds of refining and coarsening
criterion according to different physical time intervals during the
code’s running. Under this setting, a grid cell size of 0.015 RS on the
solar surface is achieved through three levels of grid refinement.
The grid cell size is about 0.15 RS near the current sheet within 20
RS and about 0.7 RS near 1 AU. At the same time, themaximum grid
cell size is 1.3 RS in the corona and 7 RS in the inner heliosphere.
Furthermore, a multiple time-stepping algorithm is implemented
with the radial direction decomposed into six subdomains: 1–10
RS , 10–20 RS , 20–50 RS , 50–100 RS , 100–170 RS , 170–328 RS . For
details see Feng et al. [31].

5. Positivity-preserving consideration in the SIP-CESE MHD
model

Positivity-preservation is a crucial property that a flux dis-
cretization scheme should possess. Positivity-preservation stands
for the capability to preserve the positivity of the determina-
tive properties for the solution to be positive within physically-
permitted bounds. In ideal MHD, density ρ and pressure p should
be non-negative, but such positivity property is not always satis-
fied by approximated solutions. One can encounter this when sim-
ulating problems with low density, high Mach number, or much
large magnetic energy compared with internal energy. When this
occurs, numerical instability may develop and the simulation can
break down. Therefore, amethod guaranteeing positivity of the de-
terminative properties has to be considered in a numerical design.

When the MHD equations are written in near conservative
form, in order to derive the value of the pressure p one has to
subtract off the kinetic energy 1

2ρu
2 and magnetic energy B2

2 from

the total energy e =
1
2ρu

2
+

p
γ−1 +

B2
2 , which can be quite large

relative to the value of the internal energy or pressure, especially
in regions such as the solar corona with very small plasma β =

2p
B2 .

Such case can lead to positivity problems (that ensures that density
and pressure remains positive in a scheme under a suitable CFL-
condition) (e.g., Gombosi et al. [36], Janhunen [41], Balsara and
Spicer [88], Waagan [89], Fuchs et al. [90]). Thus discretization
errors made in computing the total energy and the kinetic energy
and magnetic energies can be large enough to generate negative
pressure. This results in an unacceptable physical situation in the
computation of solar-terrestrial space plasma flows.

In order to maintain pressure positivity, Balsara and Spicer [88]
used a hybrid scheme: both the conservative energy and the
entropy equations are solved. Close to shock waves the energy
equation is used to obtain the correctweak solution, at other places
the more robust and positive entropy equation ∂

∂t


p

ργ−1


+ ∇ ·

u p
ργ−1


= 0 can be used. That is, the conservative energy and
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entropy equations are switched to be solved according to some
criteria of shock identifier. Similarly, instead of entropy equation,
in regions of small plasmaβ and/or dynamic pressure, the pressure
equation ∂p

∂t + ∇ · (up) = −(γ − 1)p∇ · u is used to replace the
conservative energy equation [8,15]. That is, instead of solving the
total energy equationweuse the internal energy ε =

p
γ−1 equation

∂ε

∂t
+ ∇ · (εu) = −p∇ · u + Qe (18)

in those unsafe regions such as β < 0.01 or ε/e1 < 0.05.
In MPI-AMRVAC (Message-Passing Interface-Adaptive Mesh

Refinement Versatile Advection Code), Keppens et al. [68] sug-
gested a positivity fixing strategy as follows: identify all cells
(within the same grid block) that represent physical states sur-
rounding a faulty cell in a rectangular zone up to npos cells away;
(2) convert those cells to primitive variables; and (3) for all but the
magnetic field components, replace the faulty cell values by the av-
erage of surrounding physical state cells. Finally, conservative vari-
ables are reverted where needed.

It is helpful in positivity fix to use the splitting method by
writing the full magnetic field vector B as the sum of a time-
independent potential magnetic field B0 and a deviation B1 (i.e.,
B = B0 + B1), where B1 is calculated by the numerical scheme. Af-
ter splitting, this problem can bemitigated by rewriting the energy
equation in terms of the modified total energy density

e1 =
1
2
ρu2

+
p

γ − 1
+

1
2
B2
1. (19)

As pointed out by Gombosi et al. [36], solving for the deviation
B1 from the embedded field B0 is inherently more accurate than
solving for the full magnetic field vector B. This splitting approach
was first suggested by Ogino and Walker [91], applied to the
Godunov-type schemes by Tanaka [17] and Nakamizo et al. [13],
the Roe-type approximate Riemann solver by Powell et al. [20] and
Gombosi et al. [36], and the CESE scheme employed by Feng et al.
[15,29,31].

For other useful techniques in positivity-preserving, please re-
fer to the recent works by [92,93].

In the present paper, we employ the following switches: first
solve Eq. (3); Second, if negative values occur, switch to solve
Eq. (18); Third, if there still exist negative values, switch to the pos-
itivity fixing strategy proposed by Keppens et al. [68] and finally
rederive the total energy from Eq. (19). In the solar wind model-
ing, the radial speed should be kept to flow out. That is, vr must
be positive. The non-positiveness of vr may occur in the near solar
surface. In order to confirm the positiveness of vr during the cal-
culation, we also replace the faulty cell values by the average of
surrounding physical state cells.

6. Considerations of a second order accuracy AMR scheme

Sufficient spatial resolution is one desirable characteristic for
a numerical discretization scheme. It involves the capability to
capture with few nodes continuous and discontinuous waves
while not introducing spurious oscillations, and can be usually
achieved through flux or slope limiters in a numerical scheme.
High-order resolution approximationsmore than second order (for
instance, the piecewise parabolic method (PPM) [94,95] or corner
transport upwind PPM (CTU-PPM) [96,97] or 5th order weighted
essentially non-oscillatory (WENO) [98] are effective in increasing
the accuracy per unit mesh cell of finite difference methods under
almost all circumstances. This also appears to be true for flows
containing discontinuities such as shock waves. The nature of
their effectiveness must include the increased cost incurred when
invoking higher order approximations. The general belief is that
the high-order numerical scheme will provide greater accuracy
although the high-order method is complex and time consuming.
The question to be considered is whether such improvement
in accuracy is worth the additional cost. By taking account of
the ‘‘balance’’ between accuracy and cost, we suggest that the
MHD modeling from the Sun to Earth benefits from the second
order scheme. In particular, in numerical study of solar-terrestrial
physics problems, we prefer the AMR implementation of the 2nd
order spatial resolution scheme without flux vector splitting. Here
are given our comments on the advantages of using such kind of
schemes.

On one hand, since formal order of accuracy is lost in a shock
wave propagating in a coupled systemof equations [99], the higher
order methods do not accumulate the significant advantage avail-
able for smooth linear problems. In coupled hyperbolic problems
with discontinuities, it was proven by Majda and Osher [99] that
numericalmethodswithmodest restrictions are subject to a loss of
formal accuracy. The accuracy degenerates to first-order in all, but
very special cases between characteristics emanating from a dis-
continuity. Later work [100,101] has revisited this issue, but with-
out any evidence to modify Majda and Osher’s result. Examples
are found by Donat and Osher [100], where sub-cell resolution can
overcome this problem. To some extent, in analogy, this problem
can be reduced or mitigated by the AMR scheme because of the
ability of the scheme to place grid points at the location in the flow
where the largest truncation errors occur [86].

Greenough and Rider [102] and Rider and Kamm [103] carried
out a quantitative comparison of numerical methods for the
compressible Euler equations: fifth-order WENO, The piecewise
parabolic method (PPM) and piecewise-linear method (PLM) of
Godunov. In light of their conclusions, the higher-order method’s
advantage observed in the linear regime is not pronounced when
nonlinearity is introduced. Similar work in this area indicates
that the multi-dimensional results share similar phenomena that
formally high order methods are comparable to the second-
order Godunov method for nonlinear problems in multiple spatial
dimensions [A.W. Cook, W.H. Cabot, J.A. Greenough, A comparison
of high and low order schemes for shock-inducedmixing, UCRL-JC-
144109.]. These studies show that the impact of the grid spacing
is more important than that of the difference accuracy on the
performance of a numerical scheme.

On the other hand, the governing equations describing the so-
lar wind plasma are often modified to include other terms such as
the thermal conduction and the resistivity, divergence—cleaning
procedure, which leads to the difficulty in globally guaranteeing
the same high-order accuracy as the high-order scheme owns.
As done in the numerical study of incompressible Navier–Stokes
equations, simulations of turbulent channel flow indicate that
the second-order central-difference scheme resolves the turbulent
spectrum better than the high-order upwind schemes, and there
is little evidence that the high-order treatment of the pressure
equation adds sufficiently to the overall accuracy of the scheme
even if fourth-order accurate central-difference approximations
are used to construct high-order Laplacians in the pressure equa-
tion [104]. Also, AMR reflux and interpolation method may mit-
igate the overall high-order accuracy. Usually, higher-resolution
numerical schemes need more ghostcells, which must be taken
care of in AMR implementation in order to keep flux conserva-
tion. In particular, more ghostcells bring the challenging of the in-
ner boundary determination at the solar surface [15]. So far, efforts
to achieve better accuracy in numerical relativity have focused ei-
ther on implementing second order accurate adaptivemesh refine-
ment or on defining higher order accurate differences and update
schemes. Lehner et al. [105] argued for the combination that adap-
tive gridding techniques provide to resolve fine scales (in addition
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to amore efficient use of resources) together with the higher accu-
racy furnished by higher order schemes when the solution is ade-
quately resolved. But, to define a convenient higher order adaptive
mesh refinement scheme should devise a novel approach to deal-
ing with the grid boundaries for the use of high order operators
within an adaptive framework.

Although many higher order accurate schemes such as WENO
and PPM have existed for a long time, implementing them to the
AMR framework is still in its infancy. Li and Hyman [106] com-
bined high order finite difference WENO with AMR, where the use
of a piecewise linear prolongation in space reduces the scheme
to second order accuracy. Shen et al. [107] proposed a finite dif-
ference AMR-WENO method for hyperbolic conservation laws by
combining the AMR framework with the high order finite differ-
ence WENO method in space and the total variation diminishing
(TVD) Runge–Kutta (RK) method in time (WENO-RK) by a high or-
der coupling. These WENO-AMR studies showed a significant im-
provement of the fifth order AMR-WENO over the third order one,
not only in accuracy for smooth problems, but also in its ability
in resolving complicated solution structures, due to the very low
numerical diffusion of high order schemes. At the same time, it
is found that designing a robust AMR-WENO scheme that is both
conservative and high order (higher than second order) is a dif-
ficult task, due to the mass inconsistency of coarse and fine grid
solutions at the initial stage in a finite difference scheme. In re-
alizing such high order coupling, the following major roadblocks
exist: 1) it is difficult to maintain high order accuracy across sev-
eral levels of grids. In the AMR algorithm, the fine mesh solu-
tions are interpolated from the coarse mesh solutions. Solutions
at boundary points are needed not only at the current time but
also at intermediate fine grid time steps (subcycles) as well as RK
sub-stages. The same temporal and spatial accuracy are required
in the data prolongation procedures as those of the base inte-
grator. 2) introducing a high order accurate scheme in the AMR
setting makes it harder to maintain local mass conservation. It is
critical to conserve the properties of solutions when the mesh res-
olution changes. According to Berger and Colella [86], a flux correc-
tion step was introduced to preserve themass conservation for the
traditional finite volume AMR method. However, the space–time
conservative CESE formulation differs from previous techniques
because of global and local flux conservation in a space–time do-
main without resorting to interpolation or extrapolation, and no
flux correction was needed [74,75]. 3) in a higher order accurate
scheme, robust and inexpensive refinement criteria are difficult to
find. 4) For theMHDequations,multi-dimensional AMRMHDcom-
putations must handle the additional complication of maintain-
ing a solenoidal magnetic field [8,29,31,68]. Although Berger and
Colella [86] proposed an adaptive mesh refinement (AMR) scheme
for hydrodynamics to conserve scalar quantities (e.g., mass, en-
ergy) and numerical fluxes, additional challenges are presented in
physical systems satisfying the Stokes’s law type of equation with
the divergence free evolution of vector fields, such as velocity fields
in incompressible hydrodynamics and magnetic fields in magne-
tohydrodynamics (MHD). Divergence control methods are highly
application dependent. As pointed out by Tóth et al. [8], since the
∇ · B = 0 condition is a consequence of the initial condition only,
the local time stepping conventionally used in AMR will lead to a
steady state solution with non-zero ∇ · B, if nothing is done for
the modification of the induction equation (such as the 8-wave
scheme [20], the parabolic/hyperbolic cleaning or the generalized
Lagrangian multiplier [108], and the projection scheme [109] so
that the divergence free condition depends on the boundary con-
ditions and not on the initial conditions. And the constrained trans-
port scheme [110–112], although popular, cannot be combined
with the local time stepping towards steady state, because it relies
on the initial condition to maintain the divergence-free magnetic
field. Meanwhile, although the directionally splitting approach can
be easily applied to any kind of grids and in any dimensions for
hydrodynamic problems, it is unsuitable for MHD in that dimen-
sionally split MHD algorithms cannot preserve the divergence-free
constraint between each one-dimensional update [96,97,113], be-
cause it is impossible to enforce the divergence-free constraint be-
tween partial updates unless all three components of themagnetic
field are updated together, which in turn violates the assumption
crucial to the splitting method that each dimensional operator is
independent and can be split from the others. As pointed out by
Balsara [113], the directionally split algorithms are also unsuitable
for AMR applications inwhich the fluxes and electric fields that are
needed for flux correction or electric field correction steps should
contain all the contributions from all the waves that arrive at the
boundaries or the edges (e.g., Balsara [114–116]). In principle, the
fluxes and fields that are obtained from directionally split algo-
rithms do lose this property, while the unsplit algorithms do have
this attribute. Although the CESE method does not inherently sat-
isfy the discrete divergence constraint of the magnetic field, the
numerical results from the application of the CESE method cannot
be improved further by using a divergence cleaning procedure [8,
15,29,31,117–121] such as the projection method, the constraint-
transportmethod, thehyperbolic/parabolic cleaningmethodor the
generalized Lagrangian multiplier, and eight-wave method.

A detailed comparison of AMR versus high order schemes is
given by Jameson [122] for a range of different problems. It is be-
lieved that theAMR schemewill be advantageous if theAMR region
is below a certain proportion of the entire domain; and that it is
advantageous to have an AMR scheme with as high order as the
regularity of the partial differential equation. As pointed out by
Jameson [122], AMR methods can be very effective as long as two
fundamental requirements are satisfied: (1) The region of the do-
main needing refinement must be confined to a relatively small
fraction of the computation domain. Roughly no more than 1/3
of the domain should be at the finest grid spacing. (2) The nu-
merical order of the AMR scheme should be as close as possible
to the numerical order of the computational data and should not
exceed it. That is, if one has a flow that is essentially shock domi-
nated, roughly of piecewise linear structure, and if the shocks never
fill more than 1/3 of the domain, then low order AMR schemes
can offer a large computational savings when compared to other
methods of calculation. These two fundamental requirements are
evidenced by the solar-terrestrial phenomena such as heliospheric
current sheet (HCS), corotating interaction regions (CIRs) and coro-
nal mass ejections (CMEs) or interplanetary shocks, which can
never occupy more than 1/3 of the vast solar-terrestrial space.

The last but not the least point we want to mention is that the
degeneracy of eigenvalues in MHD system suggest us to avoid the
flux-splitting schemes as possible as we can. The MHD equation
system forms a non-strictly hyperbolic system. The eigenvalues
also can reduce locally to coincide with each other when the mag-
netic field switches polarity. As a consequence, the analytic struc-
ture of the weak solution is unknown where degeneracy occurs.
Nevertheless, most numerical approaches for solving this equation
system adopt the characteristic-based or approximate Riemann
[123–125] and total variation diminishing (TVD) schemes [17].

The basic idea of the characteristic-based methods, either the
flux vector splitting or flux difference splitting (often referred to
as the approximate Riemann or Godunov approach) for identify-
ing upwind directions in solving a hyperbolic equation system,
is derived from eigenvalue and eigenvector analysis [126,127]. A
distinguishing feature of upwind numerical methods is that the
discretization of the equations on a mesh is performed accord-
ing to the direction of propagation of information on that mesh.
The essential process in numerical scheme designs is to construct
a non-singular similarity matrix and its left-hand inverse from
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Fig. 3. Synoptic maps of the coronal holes at 1 RS for CR 2060. The left panel is the SOHO/EIT 195 Å observation, in which the black vertical stripes represent data gaps.
The right one presents the open-field regions and closed-field ones from the SIP-AMR-CESE MHDmodel, where the green shaded areas are of closed magnetic field and the
white regions are of open field. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the eigenvectors of the coefficient matrices in each spatiotempo-
ral dimension. Through this process, the formulation reduces to
the Riemann, or at the least, the approximate Riemann problem
[126]. Many flux difference splitting methods of Godunov type for
MHD system have been designed such as HLL (Harten–Lax–van
Leer)-type schemes [41,42,112,128–132]. The flux vector split-
ting methods are developed by MacCormack [133] and Jiang and
Wu [98]. The MHD equations are not homogeneous of degree one
with respect to the state vector and hence cannot directly per-
form flux vector splitting. To overcome this numerical difficulty,
Powell et al. [20,123] successfully imposed Gauss’s law as a modi-
fier to the Jacobian coefficient matrices. Also, MacCormack [133]
demonstrated that the flux vectors could be expanded to pre-
serve the homogeneous of degree one property for the MHD equa-
tions. He has found a Jacobian matrix that leads to the identical
eigenvalues and eigenvectors derived by Powell et al. [20]. Their
efforts have paved the way for applying a characteristic-based
scheme for computational MHD. In characteristic-based methods,
all the flux-splitting schemes prove to be dissipative [134] and
very recently a method of reducing numerical diffusion in some
characteristic-basedmethods is proposed by Tóth et al. [135]. In or-
der to reduce the numerical dissipation, Yee and Sjögreen [136] de-
signed a class of low dissipative high order (fourth or higher-order
Lax–Friedrichs scheme or an approximate Riemann solver) filter
schemes forMHD systemswith theminimization of the divergence
of the magnetic field ∇ · B numerical error but without having to
deal with an incomplete eigensystem set while at the same time
ensuring that correct shock speeds and locations are computed in
the ideal conservative MHD system. As noted by Shen et al. [137],
in the eigensystem of Roe and Balsara [138] and Cargo and Gal-
lice [139], the eigenvalues of the Alfvén waves have no affect on
the flux. In other words, any values can be used for the eigenval-
ues of the Alfvén waves and the flux will be the same. This makes
the flux splitting based on Roe’s approximate Riemann solver un-
certain. Another kind of low diffusion higher order schemes for
MHD system [137,140] was developed by combining the convec-
tive upwind and split pressure (CUSP) WENO scheme with the
constrained transport algorithm. This scheme simultaneously con-
siders the convective upwind characteristics and avoids the com-
plication of deriving the eigenvalues and eigenvector systemwhen
the MHD equations are incorporated. These kinds of low dissipa-
tive schemes may be helpful in mitigating the numerical dissipa-
tion of future consideration in solar wind modeling but presently
they are usually of higher order spatial accuracy.

Roe [126] has pointed out that one could not expect to find
a legitimate solution by solving differential equations in regions
where the true solution is not differentiable. Therefore, the numer-
icalmethods built on the integral rather than differential conserva-
tive laws should be preferentially considered. In the CESE method,
by treating space and time as one entity, the ideal MHD equa-
tions are formulated in a space–time integral form, and are solved
by the space–time conservation element and solution element
method. Contrast to the modern upwind methods, no reconstruc-
tion procedure or Riemann solver is needed in this approach. Its
computational logic and operational count are much simpler and
more efficient. Moreover, no special treatment has been employed
to maintain the divergence-free condition for the magnetic field
[118,119]. Nevertheless, the divergence free constraint has been
faithfully maintained in smooth region, while the magnitude of
|∇ · B| is bounded in regions near shocks.

Near the computational domain boundaries, the accuracy of the
spatial derivatives has to be decreased. Conventionally, centered
differences have to be replaced by one-sided differences because
grid points are available only on the interior side of the boundary.
As pointed out by Poinsot and Lele [141], the overall accuracy
of the scheme is not affected if the order of approximation near
the boundary is equal to the scheme order minus one. Numerical
validations [15,29,55,58,60] indicate that this is not a major
difficulty.

Based on the above arguments or comments, we prefer to use
the 2nd order spatial resolution schemes in solar wind modeling.
To some extent, based on the space–time conservation integral
methodwithout usingRiemann solver, the CESEMHDsolver of sec-
ond order accuracy in space–time domain is one of the best candi-
dates for MHD-based modeling solar-terrestrial physics problems.

7. Numerical results

In this section, we concisely present the model’s results for
the steady solar corona and interplanetary space in CR 2060 and
compare them with the observations from multiple spacecraft to
validate the performance of the SIP-CESEMHDmodel with AMR of
hexahedral meshes developed in the previous sections. In fact, the
solarwind background in the inner heliosphere during CR 2060 has
been investigated by some researchers [28,31,58,142], and herewe
select it as our studied interval in order to better assess the model.

7.1. Steady corona

One of the most striking features of the large-scale solar corona
is coronal holes, which are believed to be associated with open
magnetic field regions and to be the source regions of fast solar
wind. Thus the plasma in coronal holes has lower density than that
in other coronal regions due to the continuous expansion of the so-
lar wind. The coronal-hole boundaries are often used to evaluate
the quality of a numerical MHD model for the steady solar wind.
Fig. 3 displays the synoptic maps of coronal holes at the base of
the corona obtained from observations of the Extreme ultraviolet
Imaging Telescope (EIT) onboard SOHO (left panel) and from the
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Fig. 4. Synoptic maps at 2.5 RS for CR 2060. The first row indicates the white-light polarized brightness at the east (left) and west (right) limbs from SOHO/LASCO-C2. In
the first row, the black lines denote the magnetic neutral lines from the MHDmodel and the white lines from the PFSS model. In the second row, the left panel overlays the
isolines of the radial magnetic field [Gauss] on the contour map of the simulated number density N [105 cm−3] and the right one is the pseudo-color image of the radial
speed vr [km s−1]. In the left panel, the dashed lines stand for inward radial magnetic field and the solid ones outward radial magnetic field. The dashed lines in the right
panel denote the magnetic neutral lines.
model solution (right panel) for CR 2060. The black vertical stripe
in the left panel represents data gaps. In the right panel, the mod-
eled coronal holes (the open-field regions) are displayed in white
color and the other regions (the closed-field regions) with green.
The open- and closed-field regions are determined by tracing the
magnetic field lines from6RS back to the photosphere. Both the ob-
servations and the model solution show that equatorward bound-
ary of the northern polar coronal hole ranges between 55◦ and
73◦ N. As for the southern polar hole, seen from the simulated re-
sults, its equatorward boundary lies roughly along the latitudinal
line of 70◦ S except two large extending holes between 70◦ and
190◦ and around 300◦. Though the EIT observation cannot give
the global view because of data gap, Riley et al. [143] and Yang
et al. [58] gave similar coronal-hole boundaries. In fact, the south-
ern polar coronal hole could not be clearly seen from SOHO and
STEREO (Solar TErrestrial RElations Observatory) because they or-
bited near their highest points in heliographic latitude during CR
2060. In additional to the polar coronal holes, the isolated equa-
torial holes around (θ, φ) = (10◦, 240◦) and (0◦, 350◦) are also
reproduced with a relatively small size in themodel solution. Mid-
latitude or equatorial holes were rarely present in the previous so-
lar minima. However, their presence has become an uncommon
observational feature during the 2008 solar minimum, which has
attracted the interests ofmany solar physicists and heliophysicists,
e.g., [28,54,144–148]. To sum up, our simulation has basically cap-
tured the open–closed boundary.

In Fig. 4, we present the synoptic maps of white-light polarized
brightness (pB) at the east (left) andwest (right) limbs observed by
the Large Angle Spectrometric Coronagraph (LASCO) C2 on board
SOHO and the synoptic maps of the proton number density and
the radial velocity on the surface of 2.5 radii. The bright areas in
pB images often indicate that there are high-density structures
near the sky plane along the line of sight through these points.
This figure shows that both the MHD and PFSS models give almost
the same magnetic neutral line (MNL) characterized by two peaks
roughly at φ = 150◦ and φ = 310◦ and a trough at φ = 240◦,
which indicates there exists the presence of the tilting andwarping
of the MNL and also the curving of the streamer belt during this
period. The peak of the MNL is located just next to the southern
coronal hole and the trough next to the isolated equatorial coronal
hole. Fig. 4 also shows that the MNL is surrounded by regions of
high density and low speed plasma flow, which is consistent with
the distribution of the pB enhanced regions observed by LASCO/C2
and the simulation conducted by Feng et al. [31]. It should be noted
that the high-density structures are also present in the regions far
away from the MNL shown in the upper panels of Fig. 4 and are
associated to unipolar streamers [143].

Fig. 5 presents the white-light pB images from 2.3 to 6 RS
recorded by SOHO/LASCO C2 (left panel) and synthesized from
the simulation result (right panel) at φ = 0◦–180◦ for CR 2060.
The upper left panel in Fig. 6 displays the simulated magnetic
field topology projected on the meridional planes from 1 to 11 RS ,
which is color-coded by the magnitude of the radial speed. The
upper right panel exhibits the simulated current sheet from 1 to
6 RS . The bottom panel in Fig. 6 is the simulated radial solar-wind
speed on the meridional plane from 1 to 20 RS , where the black
quadrilaterals denote the grid blocks. In Fig. 5, the bright areas span
wide latitudes at both limbs. Comparing with Figs. 4 and 6, we can
find that the southeastern and northwestern parts of the bright
structures in Fig. 5 are correspondent to the magnetic neutral
line, and the northeastern and southwestern parts are probably
associated with the edges of the unipolar streamers or pseudo-
streamers roughly centered at Longitudes 315◦ and 225◦, which
can be seen more clearly in Fig. 5 of Riley et al. [143]. Unipolar
streamers separate holes of the same polarity, and hence contain
a double loop structure and emanate low-speed solar wind in
interplanetary space [143]. Other causes for the diffusive bright
structures are attributed to the high-density regions in different
longitudes projected onto the sky plane and the transient event on
Day 228 recorded by STEREO.

7.2. Interplanetary solar wind

In order to consider the solar wind structure in interplanetary
space and the in-situ measurements, we present the model solu-
tions at the surfaces of 20 RS and 215 RS in Fig. 7 and compare the
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Fig. 5. The coronal observation and the simulation result on the meridional plane at φ = 0◦–180◦ for CR 2060. The left and right panels are the white-light pB images from
2.3 to 6 RS recorded by SOHO/LASCO-C2 and computed from the simulation, respectively.
Fig. 6. The simulated coronal results for CR 2060. The upper left panel is the
simulated magnetic field topology projected on the meridional plane at φ =

0◦–180◦ from 1 to 11 RS , and the magnetic field lines are color-coded by the
magnitude of the radial speed. The upper right panel exhibits the simulated current
sheet from 1 to 6 RS . The bottom panel is the simulated radial solar-wind speed on
themeridional plane atφ = 0◦–180◦ from1 to 20RS , where the black quadrilaterals
denote the grid blocks. The overset grids between components can be easily seen
near the lines of θ =

π
4 and 3π

4 .

modeled temporal profiles of the solarwind parameterwith the in-
situ measurements in Fig. 8. Fig. 7 shows that the first peak of HCS
roughly centered around at φ = 150◦ at 2.5 RS shifts to φ = 140◦

at 20 RS and φ = 80◦ at 215 RS due to the solar rotation, while the
trough at φ = 240◦ shifts to φ = 230◦ at 20 RS and φ = 165◦ at
215 RS . What is more, the highest mass-flux regions are coincident
with the locations of HCS and the low-speed solar wind (vr < 550
km/s) covers about 50◦–65◦ in latitude, unlike the low-speed solar
wind only spanned 40◦ in the previous solar minimum. These are
consistent with the studies on the unusual solar minimum caused
by theweaker polar photosphericmagnetic field [31,54,148]. In ad-
dition, the upper right panel in Fig. 7 shows that the finer AMRgrids
resolve the interfaces between high-speed and low-speed streams
very well. Seen from Fig. 8, the model matches the stream struc-
ture reasonably well. The model solution shows that the initial
long-duration of slowwind is followed by a strong and steep high-
speed stream on Day 12, August 26, 2008, which is one day ear-
lier than the observation. The second modeled high-speed stream
rises on almost the same date as observed, but declines so slowly
that the solutionmisses the low-speed stream between the second
and third high-speed streams. Both themodeled and themeasured
polarities of the radial magnetic field during this interval switch
from inward to outward around August 30, 2008 and are in rea-
sonable agreement except on the first 4 days and the last two days.
The smaller-scale reversals missed by themodel’s results probably
represent waves and/or turbulence, which are not included in the
MHD model. Like many other numerical MHD models, the radial
field strength obtained from the model solution here is only one-
third to one-half of the observation, which cannot be improved
only by means of high-resolution grids as other researchers noted
Riley et al. [28].

8. Conclusions

In this paper, a new adaptive mesh refinement implementation
of SIP-CESE MHD model is established directly in hexahedral
meshes with the aid of the parallel AMR package PARAMESH
available at http://sourceforge.net/projects/paramesh/. Numerical
validation through CR 2060 is carried out by the newly developed
3D SIP-AMR-CESE MHD model. The numerical simulation has
reproduced a lot of features near the Sun during the simulated
CR 2060. The numerical results in CR 2060 have some distinctions
from the previous minima demonstrated by other researchers [54,
149]. Many observed interplanetary structures have also been
reproduced by the simulations. At 1 AU, the steady solutions
from our model have captured the observed changing trends of
the solar wind parameters for this CR except that some peaks of
solar wind speed decline more slowly and arrive no more than
3 days earlier than observed. In addition, the IMF polarities and
their changes are captured by our simulations with fairly good
accuracy. These simulated features by this new implementation
confirm to those obtained by AMR implementation in the context
of reference coordinates [31]. Here, decomposition of a spherical
surface grid (θ, φ) into six identical components with piling up the
radial direction, combined with a simple radial decomposition of
the spherical shell computational domain, can bemanaged to yield
very good load balancing since the processor workload and the
communication load are very similar for each processor. However,
this is not necessarily true for other grids, in particular AMR in
Cartesian coordinates.

http://sourceforge.net/projects/paramesh/
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Fig. 7. The simulated steady solution in interplanetary space from theMHDmodel for CR2060. The top rowdisplays the isolines of the radial speed [vr : km s−1] superimposed
on the synoptic pseudo-color image of the mass flux density [Fm: 108 km s−1 cm−3R2

s ] at 20 RS (left), and the pseudo-color image of the radial velocity in the solar equatorial
plane (right). The bottom row shows the synoptic contours of the simulated proton number density [N: cm−3] (left) and vr [km s−1] (right) at 215 RS . Here, the dashed lines
denote the magnetic neutral lines.
Fig. 8. The calculated MHD steady state at 1 AU for CR 2060 with comparisons of the one-hour averaged OMNI data near 1 AU for radial solar-wind speed [vr ], number
density [N], temperature [T ], and radialmagnetic field [Br ]. Here, the green lines denote the observations and the red lines represent the numerical results. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
On the one hand, ourmodel can reproduce the shape and distri-
bution of the polar coronal holes and the presence of the equatorial
holes most of the observed features for CR 2060. It can also achieve
the basically consistent temporal profiles of solar wind parameter
at 1 AU with the in-situ measurements. These features are essen-
tially determined by the photospheric magnetic fields, especially
their dipole and quadrupole components [150] and the polar open
fields [151], and they are also in agreementwith the previous stud-
ies [31,58,143]. On the other hand, we should also note that there
exist some differences between the numerical results and obser-
vations, such as the magnitude of radial magnetic fields and ar-
rival times of the high-speed stream at the Earth. For the purpose
of improving the numerical results to better capture the structures
of the heliosphere during specific time periods, it may be reason-
able to conduct simulations using high time-cadence photospheric
magnetograms to drive the model just as done by Riley et al. [28],
Feng et al. [55], Yang et al. [58], and Feng et al. [60]. Another rem-
edy may lie in running different cases using synoptic maps from
different instruments and choosing the solution that best matches
the observations under study. Additionally, the Air force Data As-
similative Photospheric flux Transport (ADAPT) model [152–155]
can assimilate different observations into surface flux model and
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thus provide more instantaneous snapshots of the global photo-
spheric field distribution than those by traditional methods. The
ADAPT results by incorporating the high-quality observations from
SOHO/MDI and SDO/HMI [156] will be promising to improve the
input of the MHD simulations.

Computationally speaking, the huge computation requirement
in global MHD simulations is also the main problem that needs
to be solved, and high-performance computational models are
needed to make the real-time or faster than real-time numerical
prediction of adverse space weather events and their influence
on the geospace environment [47,157,158]. With the recent de-
velopment of modern graphics processing units (GPUs), it is pos-
sible to fully exploit the computing power in a heterogeneous
CPU/GPU cluster and significantly improves the overall perfor-
mance of global MHD simulations in a more efficient manner as
shown by Feng et al. [47,157] and Wong et al. [158]. This kind
of GPU-accelerated implementation will be a promising route to
speedup our code in the future.
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