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Abstract
Fast sausage modes in solar magnetic coronal loops are only fully contained 
in unrealistically short dense loops. Otherwise they are leaky, losing energy 
to their surrounds as outgoing waves. This causes any oscillation to decay 
exponentially in time. Simultaneous observations of both period and decay 
rate therefore reveal the eigenfrequency of the observed mode, and potentially 
insight into the tubes’ nonuniform internal structure. In this article, a 
global spectral description of the oscillations is presented that results in an 
implicit matrix eigenvalue equation  where the eigenvalues are associated 
predominantly with the diagonal terms of the matrix. The off-diagonal terms 
vanish identically if the tube is uniform. A linearized perturbation approach, 
applied with respect to a uniform reference model, is developed that makes 
the eigenvalues explicit. The implicit eigenvalue problem is easily solved 
numerically though, and it is shown that knowledge of the real and imaginary 
parts of the eigenfrequency is sufficient to determine the width and density 
contrast of a boundary layer over which the tubes’ enhanced internal densities 
drop to ambient values. Linearized density kernels are developed that show 
sensitivity only to the extreme outside of the loops for radial fundamental 
modes, especially for small density enhancements, with no sensitivity to the 
core. Higher radial harmonics do show some internal sensitivity, but these 
will be more difficult to observe. Only kink modes are sensitive to the tube 
centres. Variation in internal and external Alfvén speed along the loop is 
shown to have little effect on the fundamental dimensionless eigenfrequency, 
though the associated eigenfunction becomes more compact at the loop apex 
as stratification increases, or may even displace from the apex.
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1. Introduction

Coronal magneto-seismology seeks to infer the physical characteristics of solar coronal struc-
tures, particularly coronal loops, from observations of low frequency magnetohydrodynamic 
(MHD) waves and oscillations.

Currently unmeasurable physical parameters inside coronal loops such as magnetic field 
strength, field-aligned flow magnitude, plasma temperature, and effective adiabatic index can 
be probed by various coronal seismology inversion schemes. Collective wave modes sup-
ported by magnetized tubes include kink and sausage modes. Both kink and sausage modes 
abound in the lower solar atmosphere.

Although much attention has been devoted to kink modes (mc = ±1, assuming an eimcθ 
dependence on cylindrical angle θ), there is a long history of interest in fast sausage modes 
(mc = 0) as well [1–6]. Sausage modes are better suited to probing the radial structure of 
loop filaments, whereas kink modes are more suited to exploring their cores. They are widely 
thought to be implicated in quasi-periodic pulsations (QPPs) [7] in flare loops.

Slow sausage modes have independently received considerable attention [8–10]. These 
‘ankle-biter modes’ are essentially field-guided acoustic waves largely restricted to the lower 
reaches of loops. They are not present under the pressureless assumption adopted here, and 
will not be discussed further. Fast sausage waves on the other hand are fast magneto hydro-
dynamic waves partially (leaky) or totally (non-leaky) confined to over-dense magnetic flux-
tubes acting as wave guides.

Non-ideal MHD mechanisms such as electron heat conduction, ion viscosity, and finite 
plasma-β are are not included at this stage as they are believed to be too weak to cause the 
temporal damping observed in QPP events [2, 3]. A detailed survey of the more extensive 
literature on coronal sausage waves and QPPs is given in [5].

Except for very short fat loops, (fast) sausage modes in coronal conditions are normally 
leaky. That is, they couple to radially outgoing oscillations in the surrounding plasma that 
extract energy from the loop oscillations [11, 12]. This causes them to exhibit complex eigen-
frequencies, with negative imaginary parts. Observations of both period and decay rate there-
fore have the potential to usefully constrain loop properties.

Recently, [5] and [6] explored sausage oscillations in pressureless straight tube models 
using numerical solution of the governing ordinary differential equation (ODE) in radius r, 
implementing a variety of density cross-sections. Finite plasma-β is addressed in [13] but 
will not be considered here. These studies aimed to constrain the internal to external density 
contrast ρi/ρe and the transverse Alfvén crossing time R/ai, where R is the loop radius and ai 
the internal Alfvén speed, as well as obtain some information on the steepness of the radial 
density profile in the boundary layer between loop and external corona.

In this article, we address essentially the same model, though optionally with stratification 
along the loop allowed as well (the effects of stratification on kink waves have been well-
studied: [14, 15], etc). However, rather than using a direct numerical ODE solver, we adopt a 
spectral decomposition that has several desirable properties. In particular, the resulting matrix 
eigenvalue problem is highly diagonally dominant, with the off-diagonal terms representing 
the radial inhomogeneity. This makes it easy to linearize the problem (in essentially boundary 
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layer width), and thereby to identify density inversion kernels that explicitly show which 
modes are sensitive to which parts of the loop. This is carried out for the unstratified case, 
where a consequent perturbation analysis yields an explicit formula for frequency variance in 
terms of radial inhomogeneity parameters. Accuracy of the linearized perturbation formula is 
tested against full numerical solution.

Finally, the method is extended to allow for stratification along the loop, both internally 
and externally (independently). It is found that even mild stratification can significantly 
affect the eigenfunction, making it more compact at the loop apex.

2. Mathematical development

2.1. General equations

Consider an axisymmetric Alfvén speed distribution a(r, z) in a pressureless straight ‘loop’ 
of length � and radius R, surrounded by an external atmosphere with Alfvén speed dependent 
only on z, a(r, z) = a0(z) (r > R). In the pressureless plasma approximation, sound speed is 
neglected compared to Alfvén speed, freezing out slow modes. (Loops of non-uniform cross 
section are considered by [4], and non-zero plasma-β is addressed by [13]).

As is conventional, the loop is straightened for mathematical convenience [16], as depicted 
in figure 1, thereby neglecting curvature effects [17–19]. The coordinate z is distance along the 
loop from one footpoint. The terms ‘loop’ and ‘tube’ will be used interchangeably throughout, 
despite the rectification.

If wave perturbations on this system are also assumed axisymmetric—the sausage 
modes—the linearized wave equation for the radial displacement ξ assuming an exp(−iωt) 
time dependence is

∂r

(
1
r
∂r (r ξ)

)
+

(
∂2

z +
ω2

a2

)
ξ = 0, (1)

where ∂r  represents the partial derivative with respect to r, etc (see for example [5], equa-
tion (6)). The Alfvén speed a is related to the magnetic field strength B and plasma density ρ 
via (in SI units)

a2 =
B2

µ ρ
, (2)

where µ = 4π × 10−7 henry m−1 is the permeability of free space [20].
For this sausage mode, there is no coupling to the Alfvén wave, unlike the case of kink 

waves, where coupling with the Alfvén wave results in resonant absorption and consequent 
kink mode decay. The wave under consideration therefore is a pure fast sausage wave.

The adopted boundary conditions are ξ = 0 on r = 0, z = 0, and z = �, and that ξ and ∂rξ  
match continuously to an outgoing or evanescent external solution at r = R.

Using separation of variables, the external solution may be written as

ξe(r, z) =
∞∑

n=0

cnH(1)
1 (Lnr)wn(z), (3)

for arbitrary cn, where H(1)
1  is the Hankel function of the first kind and order 1 and (Ln, wn) is 

the nth eigenvalue/eigenfunction of the regular Sturm–Liouville equation
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w′′
n +

(
ω2

a0(z)2 − L2
n

)
wn = 0 (4)

with boundary conditions wn(0) = 0 = wn(�). The wn will be alternately even and odd about 
z = �/2 since a0(z) is assumed even. By general Sturm–Liouville theory, orthogonality ∫ �

0 wn wν dz = 1
2 δnν (adopting a particular normalization) is guaranteed provided L2

n �= L2
ν, 

making the wn convenient expansion functions.
Internally, a Bessel/Sturm–Liouville expansion of the radial displacement is adopted,

ξ(r, z) =
∞∑

m=1

∞∑
n=1

Ymn Xmn(r, z), (r � R), (5)

where the orthogonal expansion functions are

Xmn = W−1/2
mn J1(lmnr)wn(z), (6)

and the lm n are the internal radial wavenumbers belonging to a radially uniform reference 
tube. Here

Wmn = �

[
R2

4
(
J0(lmnR)2 + J1(lmnR)2)− RJ1(lmnR)J0(lmnR)

2lmn

]
 (7)

normalizes the kernel Kmnpq(r, z) = r Xmn(r, z)Xpq(r, z):
∫ �

0

∫ R

0
Kmnpq(r, z) dr dz = δmpδnq, (8)

where δmn is the Kronecker delta. The orthogonality (8) is valid whether lmn is real or complex.
If the external medium is not stratified in z, i.e. a0 = constant, then wn(z) = sin knz, where 

kn = nπ/� are the longitudinal wavenumbers. The expansion is then Bessel/Fourier. In that 
case, the Ln are given simply by

Ln =

(
ω2

a2
0
− k2

n

)1/2

, (9)

Figure 1. Schematic of a coronal loop (left) and the rectified flux tube model used in 
the analysis (right).
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−π/2 < arg Ln � π/2. Otherwise, they are the eigenvalues of equation (4), as above.
The internal radial wavenumbers lmn are determined by the condition that each of the 

expansion functions individually couples to an evanescent or outgoing radiation solution in 
r > R, i.e. that both ξ and ∂rξ  are continuous at R. That is,

lmn
J0 (lmnR)
J1 (lmnR)

= Ln
H(1)

0 (LnR)

H(1)
1 (LnR)

. (10)

If ω ∈ R and ω2 < a2
0k2

n then Ln is pure imaginary (arg Ln = π/2), the Hankel functions 
become modified Bessel functions of the second kind (the evanescent exterior), and the lmn 
are real.

It is convenient to define Q(r, z) = a(r, z)−2 − a0(z)−2. Multiplying equation (1) by rXmn 
and integrating yields

∞∑
p=1

∞∑
q=1

YpqVmnpq + ω−2 (L2
n − l2mn

)
Ymn = 0, (11)

where

Vmnpq =

∫ �

0

∫ R

0
Q(r, z)Kmnpq(r, z) dr dz. (12)

When truncated (1 � m, p � M  and 1 � n, q � N), equation (11) has non-trivial solutions if 
and only if the MN × MN  matrix

ω−2 diag
[
L2

n − l2mn

]
+ V = K A K (13)

is singular, where V has components Vmnpq. Here K2 = ω2I − diag
[
L2

n − l2mn

]
, and equa-

tion (13) defines A = K−2 + K−1VK−1 − ω−2I . In practice, the eigenvalue problem is solved 
iteratively to make A singular.

2.2. Uniform density tube

In the unstratified case, a0 = constant and equation  (9) applies, it is convenient to define 
Q = ∆/a2

0, where Δ is the fractional density increase inside the tube.
Equation (10) is also the appropriate matching equation when Δ is uniform and there is an 

Alfvén speed discontinuity at R. In that case though, the Xmn are not just expansion functions; 
they are independent modes with their own eigenfrequencies

ωmn = a
(
k2

n + l2mn

)1/2
=

a0√
1 +∆

(
k2

n + l2mn

)1/2
. (14)

The condition for a sausage mode to be trapped (non-leaky) is that Ln be imaginary, 
i.e. k2

n > ω2/a2
0 = (k2

n + l2mn)/(1 +∆), hence k2
n∆ > l2mn, or ∆ > l2mn�

2/(n2π2). With 
lmn = O( j1,m/R), trapped sausage modes are only to be expected for very large density 
enhancements ∆ � ( j21,m/n2π2)(�2/R2), where j1,m = O(mπ) as m → ∞ is the mth zero of 
the J1 Bessel function. For typical long thin loops this is highly implausible for the longitudi-
nal fundamental n = 1 or low harmonics, even for m = 1, so only leaky sausage modes need 
be considered. (An example of a short dense uniform loop that supports a non-leaky sausage 
mode is R = 0.5, � = a0 = 1, ∆ = 5 > �2/R2 where ω = 2.506 for m = n = 1, for which 
ω < a0k1 = π  as anticipated).
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The eigenfrequencies set out in equation (14) provide useful reference states for perturba-
tive solution of the non-uniform Δ case. Table 1 lists the first few uniform-density eigenfre-
quencies (all leaky) for ∆ = 0.2, 1, and 4 for fat (R = 0.1) and thin (R = 0.02) loops. The n 
corresponds to the longitudinal wavenumber kn, and the m refers to the radial order. These are 
the so-called ‘Trig Modes’ analysed by [11, 12]. Without loss of generality the loop length and 
external Alfvén speed have both been scaled to unity.

Clearly, dependence of frequency on n is weak, and on m is strong, indicating the relative 
dependence of frequency on the longitudinal and radial variations in ξ. Sausage modes, by 
their nature, are sustained by radial total pressure variations, not longitudinal tension (which 
is the primary mechanism for kink waves).

2.3. Nondimensionalization

For numerical purposes it is convenient to nondimensionalize throughout. Adopting as the 
fiducial length � (the loop length) and velocity ae(�/2) (the external Alfvén speed at the loop 
apex), we also have the time scale τ = �/ae(�/2). Hence, any dimensionless frequency ω cal-
culated below should be understood as corresponding to the dimensional frequency ω/τ . The 
radii are of course all relative to �.

3. Unstratified loop with boundary layer

In this section, it is assumed that both the loop and background are unstratified in z. Then 
Q(r, z) = ∆(r, z)/a2

0, where Δ is the fractional density increase inside the tube with respect 
to the exterior.

3.1. Sensitivity of eigenfrequencies to density inhomogeneities

Assume that the spectral expansion is truncated to m � M  and n � N . Therefore, equa-
tion (11) represents MN equations in MN unknowns, Ymn. Let x(m−1)N+n = Ymn be a single 
vector rearrangement: x1 = K1 1Y1 1, x2 = K1 2Y1 2, ..., xN = K1 NY1 N, xN+1 = K2 1Y2 1, ..., 
where Kmn = (l2mn + k2

n)
1/2. Then the truncated equation (11) may be written in matrix form

Bx = λx (15)

where B = K−2 + K−1UK−1 and λ = a2
0/ω

2. Here the diagonal matrix 
K = diag[K1 1, K1 2, . . . , K1 N , K2 1, . . . , KM N ], and U is the MN × MN  symmetric matrix 

with (i, j) element Umnpq =
∫ �

0

∫ R
0 ∆ Kmnpq dr dz = Vmnpq/a2

0, where m = �1 + (i − 1)/N�, 
n = 1 + (i − 1) mod N , p = �1 + ( j − 1)/N�, and q = 1 + ( j − 1)mod N , i.e.

U =




U1111 U1112 . . . . . . U111N U1121 . . . U11MN

U1211 U1212 U1213 . . . U121N U121N . . . U12MN

... . . .
. . . . . . . . . . . . . . .

...
... . . . . . .

. . . . . . . . . . . .
...

U1N11 U1N12 . . . . . . U1N1N . . . . . . U1NMN

U2111 U2112 . . . . . . . . .
. . . . . .

...
... . . . . . . . . . . . . . . .

. . .
...

UMN11 . . . . . . . . . UMN1N . . . . . . UMNMN




. (16)
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By Gerschgorin’s circle theorem [21], all eigenvalues λ = a2
0/ω

2 lie within the union of the 
Gerschgorin disks Dmn in the complex λ-plane centred at

λ̄mn =
1 + Umnmn

K2
mn

, (17)

with radius

Rmn =

∞∑ ∞∑
p=1 q=1

( p,q) �=(m,n)

∣∣∣∣
Umnpq

KmnKpq

∣∣∣∣ . (18)

Furthermore, any set of ν contiguous disks that is disjoint from the other disks contains exactly 
ν eigenvalues. The disk centres λ̄mn are in exact accord with equation (14), the uniform-tube 
eigenfrequencies.

Several points should be made about the eigenvalue equation (15).

 (i) The off-diagonal terms in U vanish for uniform Δ, while the diagonal terms Umnmn are 
just Δ.

 (ii) The eigenvalues λ also occur implicitly in K and U, and hence in B, through the external 
dispersion relation (9) via the radial wave numbers lmn defined by equation (10).

 (iii) Increasing the truncation limits M and N does not alter the Gerschgorin centre λ̄mn, but 
does (slightly) increase the radius Rmn. Typically, for the fundamental mode m = n = 1, 
introducing a boundary layer (with α = 0.01 as in section 3.3 below) and increasing M 
and N from 3 to 4 results in a change in the numerically determined frequency ωmn only 
in the sixth significant figure. For the m = 2, n = 1 first radial overtone, the change is in 
the fifth significant figure. In either case, M = N = 3 is adequate in practice.

With that understanding in place, a linearized perturbation approach offers useful insights.

3.2. Perturbative approach

The Gerschgorin disk centres λ̄mn, as defined by equation (17), provide estimates of the true 
eigenvalues, becoming exact as the off-diagonal terms vanish with diminishing inhomogene-
ity. However, since λ̄mn actually depends on λ, the estimate is implicit rather than explicit. 
Assuming |λ− λ̃mn| is small though, where the tilde refers to the uniform reference state, a 
linear expansion may be made. Note that this does not require ∆− ∆̃ to be pointwise-small, 

only that 
∫ �

0

∫ R
0 ∆(r, z)Kmnpq(r, z) dr dz � ∆̃ for all m, n, p, q. In particular, this is valid for a 

thin enough boundary layer in which Δ drops to zero on the edge, despite the total drop being 
large.

Recalling that B is a function of λ, and expanding λ = λ̃+ δλ, B = B̃ + δB, and 
x = x̃ + δx, equation  (15) becomes (B̃ − λ̃ I)δx + (δB − δλ I)x = 0 to first order in small 
quantities. If λ = λmn say, then the (m, n) row (i.e. the ((m − 1)N + n)th row) of B − λ I  
is identically zero. Hence, since the associated eigenvector is x̃ = (0, 0, . . . , 0, 1, 0, . . . , 0)T , 
where the ‘1’ is the (m, n) element, it follows that

δλmn = δBmnmn, (19)

where δBmnmn is the (m, n) diagonal element. In other words, the perturbation to any eigen-
value is just the perturbation to the corresponding diagonal element of B, to leading order. 
That means that the perturbed eigenvalue is simply the centre λ̄mn of the Dmn Gerschgorin 
disk, to first order.

P S Cally and M Xiong J. Phys. A: Math. Theor. 51 (2018) 025501



9

With that result, it follows from equation (17) that

ω2
mn = ω̃2

mn +
2a2

0

1 + ∆̃
l̃mnδlmn − ω̃2

mn
Umnmn − ∆̃

1 + ∆̃
 (20)

to first order. The departure of Umnmn from ∆̃ is entirely due to the direct change in Δ and not 
the change in lmn, since the normalization (8) remains valid for any lmn. Hence, Umnmn may be 
calculated using the l̃mn radial wavenumbers. The additional term proportional to δlmn results 
from the additional dependence of the radial wavenumbers lmn on ω via the matching condi-
tion (10).

Now,

δlmn =
dlmn

dLn
δLn =

dlmn

dLn

dLn

dω
δω =

ω

a2
0 Ln

dlmn

dLn
δω =

Gmn

a2
0 lmn

ω δω, (21)

defining the dimensionless quantity

Gmn =
lmn

Ln

dlmn

dLn

=
lmn

Ln

J1(lmnR)2

H(1)
1 (LnR)2

2H(1)
0 (LnR)H(1)

1 (LnR)− LnR
(

H(1)
1 (LnR)2 + H(1)

0 (LnR)2
)

2J0(lmnR)J1(lmnR)− lR (J1(lmnR)2 + J0(lmnR)2)
,

 

(22)

which is obtained by differentiating equation (10). Ultimately, the fractional perturbation in 
the eigenfrequency of the (m, n) mode is

δωmn

ω̃mn
= − δUmnmn

2
(

1 + ∆̃− Gmn

)
 (23)

to first order, where

δUmnmn = Umnmn − ∆̃ =

∫ �

0

∫ R

0

(
∆− ∆̃

)
Kmnpq(r, z) dr dz (24)

is the kernel-averaged variation in density from the uniform state. Note that ∆̃ has not been 
assumed small, but all the δ-terms have.

Typically, the corrections Gmn are not negligible. For example, with R = 0.1 and a0 = � = 1, 
G1 1 = 0.87 − 0.25 i for ∆̃ = 0.2; G1 1 = 0.71 − 0.68 i for ∆̃ = 1; and G1 1 = 0.35 − 1.33 i 
for ∆̃ = 4.

An arbitrary density perturbation cannot uniquely be reconstructed from even a complete 
and perfect knowledge of all the sausage mode frequencies. Most obviously, δUmnmn is insen-
sitive to any part of ∆(r, z) that is odd about z = �/2, because X2

mn is even about that point 
for all n. Consequently, the odd part of Δ depends only, and very weakly, on the off-diagonal 
terms that enter at higher order.

The density sensitivity kernels Kmnmn for the thick loop R = 0.1 are displayed in figure 2 
for m = 1 and 2 (the radial fundamental and first overtone), n = 1 (longitudinal fundamental), 
and the three values of ∆̃ listed in table 1.

The radial fundamental m = 1 clearly gives good sensitivity to density at the loop edge. 
The first harmonic is more sensitive to the interior, especially for larger ∆̃. Because of the fac-
tor r in Kmnpq, there is no sensitivity at all to the tube centre. This is to be expected, since r = 0 
is a node for sausage modes. Indeed, it is a node for all higher azimuthal order modes except 
for kink modes, so only kink mode frequencies will be sensitive to the centre. Similarly, the 
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loop apex is a node for n = 2 (not shown), or any even n. The n = 2 modes are most sensitive 
at z = �/4 and 3�/4.

Corresponding plots of the kernels for the thin loop R = 0.02 are very similar (not shown).

3.3. Results: density independent of z

Consider a two-parameter density model independent of z,

∆(r) = ∆0

(
1 − (r/R)1/α

)
, (25)

Figure 2. The absolute values of the sensitivity kernels, |Km1m1(r, z)|, for the thick loop 
R = 0.1 with m = 1 (left column) and m = 2 (right column), with ∆̃ = 0.2, 1, and 4 
(top to bottom). The contours are 10, 20, 30, ... in all panels, but the shading is scaled to 
black for no sensitivity (<10) and white for maximal sensitivity separately in each panel 
in order to present maximum contrast. Only 0 < z < 1

2  is shown as these kernels are 
symmetric about z = 1

2. Note that each of these kernels is normalized to unity overall, ∫ �

0

∫ R
0 Km1m1(r, z) dr dz = 1.

Figure 3. Radial density perturbation model as given by equation (25) for ∆0 = 1 and 
α = 2−4, 2−3, . . . , 1 as labelled.

P S Cally and M Xiong J. Phys. A: Math. Theor. 51 (2018) 025501



11

that has a central plateau peaking at ∆0 at the centre, and a boundary layer falling continu-
ously to zero at the edge R. The boundary layer becomes thinner as α diminishes (see fig-
ure 3), with its thickness at half-height being (1 − 2−α)R. The uniform reference model is 
recovered for ∆0 = ∆̃ and α → 0.

3.3.1. Linear perturbation solutions. Figure 4 compares the true (numerically derived) eigen-
frequencies with those given by the perturbation formula (23) for variations around ∆0 = 1, 
α = 0, with R = 0.1. It confirms the perturbation formula, and indicates its range of validity.

3.3.2. Nonlinear solution. Although more expensive, the eigenfrequencies ωmn for a specific 
model may be determined numerically without recourse to linearization. This is achieved 
using a standard root-finder to iteratively make B − λI singular (where λ = a2

0/ω
2; recall that 

B also depends on λ in a complicated manner) given ∆0 and α. A starting guess is supplied by 
linear theory, allowing the selection of m and n.

Figure 5 shows contours of the real and imaginary parts of ω1 1 and ω2 1 for the thick tube 
R = 0.1 over a wide range of ∆0 and α. It was calculated using M = N = 3 spectral resolu-
tion. Note that there is now no need for a reference model ∆̃. Figure 6 similarly depicts ω1 1 
for the thin tube R = 0.02.

The fact that the contours of the real and imaginary parts of ω in figures 5 and 6 for the most 
part cross at angles that are not too fine suggests that observations of period and decay rate are 
sufficient to determine ∆0 and α with some accuracy, assuming of course that the model (25) 
is valid. Simultaneous inversions using two modes, say the fundamental {1, 1} and first radial 
overtone {2, 1}, would lend validity to the model if the resulting (∆0,α) were consistent.

Figure 4. Comparison of exact (full curves) and perturbation (dashed) frequencies 
ω1 1 = ωr + iωi for the case R = 0.1, ∆̃ = 1 with M = N = 4. Top row: with ∆0 = 1 
and variable α. Bottom row: with α = 0.01 and variable ∆0. The real part of ω is 
depicted in the left column, and the imaginary part in the right column. The centre of 
the perturbation expansion, ∆0 = 1, is indicated by the vertical line in the lower panels.
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4. Formulation with a stratified loop and atmosphere

We return to the gravitationally stratified atmosphere. For concreteness, assume that the exter-
nal density diminishes exponentially with height in a semicircular loop, so that

a0(z)2 = a2
1 e−β(1−sinπz/�) (26)

Figure 5. Contours of the real (black) and imaginary (red dashed) parts of ω1 1 (upper 
panel) and ω2 1 (lower panel), obtained using non-linear iteration with M = N = 3 
against the two parameters ∆0 and α of the model of equation  (25) for R = 0.1, 
� = a0 = 1.

Figure 6. Contours of the real (black) and imaginary (red dashed) parts of ω1 1 obtained 
using non-linear iteration with M = N = 3 against the two parameters ∆0 and α of the 
model of equation (25) for the thin tube R = 0.02, � = a0 = 1.
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where a1 is the external Alfvén speed at the apex z = �/2. It is assumed that Q(R, z) = 0, 
making Alfvén speed continuous at the tube boundary. No restriction is made on Q at the loop 
ends, z = 0 and �. Without loss of generality, time may be scaled by setting a1 = 1 through-
out, so the external atmosphere is characterized by one parameter only, β.

Although more complex internal densities may be accommodated by the expansion method, 
for simplicity it will be assumed here that Q takes the form (with a1 = � = 1)

Q(r, z) =
1

a(r, z)2 − 1
a0(z)2

=
(

1 − (r/R)1/α
) [

(Q0 + 1)eγ(1−sinπz) − eβ(1−sinπz)
]
= f (r) h(z),

 

(27)

which again represents a continuous Alfvén speed at r = R. The density scale heights inside 
and outside the loop match if γ = β, in which case

Q(r, z) = Q0

(
1 − (r/R)1/α

)
eβ(1−sinπz). (28)

Equation (27) corresponds to a loop centre Alfvén speed specified by 
a(0, z)−2 = (Q0 + 1)eγ(1−sinπz), representing a hot loop (relative to the external atmosphere) 
if γ < β, and a cool loop if γ > β.

With equation (26) in place, the eigenvalue problem (4) with zero endpoint conditions is 
solved numerically for the Ln and ωn. For simplicity, attention will be restricted to even modes 
in z by selecting only expansion functions wn(z) that are symmetric about z = �/2. With a 
symmetric Alfvén speed profile, as chosen here, the odd and even modes are decoupled in 
any case.

4.1. Stratified atmosphere results

For the most part, the fundamental mode is adequately represented with spectral resolution 
M = 3, N = 6 (used throughout unless otherwise noted). That is, there is very little energy in 
the m = M  and n = N  last retained expansion functions, as judged by the squared magnitudes 
of the expansion coefficients |Ymn|2. Indeed, by Parseval’s theorem, 

∑M
m=1

∑N
n=1 |Ymn|2 = 1, 

so the |Ymn|2 are just the fractional energies in each expansion mode. The Ymn are calculated 
by solving KAK Y = 0 once the frequency ω has been iteratively adjusted to make A singu-
lar (see equations (11) and (13)). The longitudinal expansion modes wn (solutions of equa-
tion  (4)) are ordered by decreasing |L2

n − ω2|, which assures that the longitudinal external 
eigenfunctions wn become increasingly oscillatory as n increases, so that n = 1 is identifiably 
the fundamental.

Since stratification is relevant chiefly to long high loops, attention will be restricted to the 
‘thin loop’ case, R = 0.02 (radius divided by length). Figure 7 displays the eigenfrequencies 
for the case Q0 = 0.2, α = 0.1, and varying stratification parameters β and γ. Clearly, these 
dimensionless frequencies dependend only weakly on stratification.

However, dimensional frequency scales as a1/�. So, considering a semicircular loop of 
length �, fixed base Alfvén speed a0(0), and Alfvén (i.e. density) dimensional scale height 
H, the dimensional frequency ωdim  scales with the dimensionless frequency ω according to 
ωdim = ω a0(0) exp[�/(π H)]/�. Hence, for a highly stratified loop, � � H , the dimensional 
frequency (and decay rate) increase exponentially with loop length.

Although the dimensionless eigenfrequencies are almost insensitive to stratification, the 
displacement eigenfunctions ξ(r, z) =

∑M
m=1

∑N
n=1 Ymn Xmn(r, z) evolve considerably as 
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β increases (figure 8), becoming progressively more compactly situated at the loop apex 
z = �/2. This corresponds to the fundamental sausage mode being trapped at the apex by 
stratification rather than the boundary conditions at z = 0 and 1. The energies in the constitu-
ent expansion functions for each of these eigenfunctions are displayed in figure 9, showing 
that m = n = 1 dominates throughout, as one might expect from figure 8.

On the other hand, when the loop itself is unstratified (γ = 0) but the external region is 
stratified (quantified by β), some higher overtones become prominent (figure 10), ultimately 
shifting the peak displacement away from the apex, though again it is concentrated by increas-
ing β. Figure 11 confirms that the immediate m = 1 longitudinal overtones are indeed quite 
prominent. Note that in this case, it was necessary to use enhanced resolution N = 10 or 12 
for small β.

Figure 7. Real (left) and imaginary (right) parts of the fundamental eigenfrequencies 
for thin loops (R = 0.02) with Q0 = 0.2 and α = 0.1 as functions of β or γ. The full 
curves correspond to γ = β, i.e. to where the internal and external scale heights are 
the same. The dashed curves relate to ‘hot’ loops where γ = 0 and β varies, i.e. the 
density is uniform in z inside the loop centre, despite the external atmosphere being 
stratified. The dotted curves correspond to β = 0 with γ varying, i.e. an unstratified 
external atmosphere surrounding a stratified loop. The dot-dashed curves belong to the 
case γ = β/2, and depict ω against β. All eigenfrequencies are calculated with M = 3, 
N = 6, except for the γ = 0 case where N = 12 for β � 1

5 , and N = 10 for 15 < β � 1.

Figure 8. The absolute values |ξ(r, z)| of the fundamental displacement eigenfunctions 
for R = 0.02, Q0 = 0.2, and α = 0.1, at β = γ = 0 (top left), 0.05 (top right), 1 (bottom 
left) and 4 (bottom right).
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Figures 9 and 11 also demonstrate that there is very little contribution of m > 1 to the fun-
damental. This is hardly surprising given the wide disparity in different-m eigenfrequencies of 
the uniform tube exhibited in table 1.

Finally, very similar behaviour in the eigenfunctions is observed when β = 0 is held fixed 
(the external atmosphere is unstratified) and γ increased (the loop is stratified internally; fig-
ure 12). In this case the expansion functions wn are just the sin(2n − 1)πz, so the compacting 
of the lobe with increasing γ is produced by Fourier superposition, and not a change in w1, as 
is the predominant mechanism in the other cases.

Figure 9. The energies |Ymn|2 of the fundamental displacement eigenfunctions of 
figure 8 for m = 1 (circles), m = 2 (squares), and m = 3 (diamonds), i.e. R = 0.02, 
Q0 = 0.2, and α = 0.1, at β = γ = 0 (top left), 0.05 (top right), 1 (bottom left) and 4 
(bottom right).

Figure 10. The absolute values |ξ(r, z)| of the fundamental displacement eigenfunctions 
for R = 0.02, Q0 = 0.2, and α = 0.1, with γ = 0 and β = 0 (top left), 0.1 (top right), 
1 (bottom left) and 4 (bottom right). Spectral resolution of M = 3, N = 6 is used 
throughout, except for the top right panel where N = 12.
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There are two surprising results from this section.

 (i) Figure 7 reveals a remarkable insensitivity of the fundamental complex eigenfrequency 
to stratification, if the Alfvén speed a1 at the apex is kept fixed. This suggests that ω is 
strongly determined by that local value of a.

 (ii) The extent to which the fundamental eigenfunctions are modified by even weak strati-
fication is remarkable. This is a case where the eigenfunction is much more sensitive 
than the eigenfrequency. This may be understood qualitatively by recourse to eigenvector 

Figure 11. The energies |Ymn|2 of the fundamental displacement eigenfunctions of 
figure 10 for m = 1 (circles), m = 2 (squares), and m = 3 (diamonds), i.e. R = 0.02, 
Q0 = 0.2, and α = 0.1, with γ = 0 and β = 0 (top left), 0.1 (top right), 1 (bottom left) 
and 4 (bottom right). Spectral resolution of M = 3, N = 6 is used and adequate 
throughout, except for the top right panel where N = 12.

Figure 12. The absolute values |ξ(r, z)| of the fundamental displacement eigenfunctions 
for R = 0.02, Q0 = 0.2, and α = 0.1, with β = 0 and γ = 0 (top left), 0.05 (top right), 
1 (bottom left) and 4 (bottom right).
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sensitivity theory in linear algebra, where it is known that eigenvectors depend more 
sensitively on parameters when the eigenvalues are closely spaced [22]. Reference to 
table 1 confirms that the eigenvalues of the uniform tube are indeed very closely packed 
in n. This makes nearby harmonics more accessible.

5. Conclusions

One conceptual and practical advantage of the spectral approach to the unstratified loop pre-
sented here is that it places the dominant contribution to the eigenvalues on a matrix diagonal, 
making them almost explicit, with the off-diagonal corrections being moments of the density 
inhomogeneity, vanishing if the tube is uniform. This makes the spectral formulation the most 
natural for exploring sensitivity of sausage mode eigenfrequencies to density inhomogeneities.

A particular benefit is that the method allows the identification of the linear density kernel 
Kmn, that directly shows the sensitivity of the various modes to density variations in different 
parts of the loop. Figure 2 shows clearly that the m = n = 1 fundamental is strongly depend-
ent upon the extreme loop edge, and that m = 2 would be needed to more accurately probe the 
interior. Observing this mode presents a challenge, but would be worthwhile.

Related to this, it is important to understand that the results presented in section 3.3 in 
terms of ∆0 and α do not actually probe the loop centre, despite 1 +∆0 being ostensibly the 
density there. That is an artefact of the model (25). In fact, a density anomaly near r = 0 is 
all but invisible to the fundamental mode, so ∆0 and α should be more properly thought of 
as parameterizing the boundary layer when used with m = 1. Higher radial order modes can 
ameliorate this deficiency somewhat, but the kink mode is a more natural discriminator of 
loop centre density.

Finally, in section 4 the general Sturm–Liouville expansion formalism is applied to allow 
stratification along the loop, both internally and externally. Numerical results carried out 
for several cases indicate that stratification leaves dimensionless eigenfrequencies almost 
unchanged, as measured in a dimensionless system based on the apex external Alfvén speed. 
Of course, stratification will alter this apex Alfvén speed and hence the actual dimensional 
frequency and decay rate. On the other hand, stratification has significant consequences for the 
fundamental eigenfunction, by either making it more compact around the loop apex as stratifi-
cation increases, or possibly adding significant contributions of higher longitudinal order (n). 
The main lobe(s) of the fundamental may even be displaced from the apex.

ORCID iDs

Paul S Cally  https://orcid.org/0000-0001-5794-8810

References

	 [1]	 Aschwanden M J, Nakariakov V M and Melnikov V F 2004 Astrophys. J. 600 458–63
	 [2]	 Kopylova Y G, Melnikov A V, Stepanov A V, Tsap Y T and Goldvarg T B 2007 Astron. Lett. 

33 706–13
	 [3]	 Inglis A R, van Doorsselaere T, Brady C S and Nakariakov V M 2009 Astron. Astrophys. 503 569–75
	 [4]	 Pascoe D J, Nakariakov V M, Arber T D and Murawski K 2009 Astron. Astrophys. 494 1119–25
	 [5]	 Chen S X, Li B, Xiong M, Yu H and Guo M Z 2015 Astrophys. J. 812 22
	 [6]	 Guo M Z, Chen S X, Li B, Xia L D and Yu H 2016 Sol. Phys. 291 877–96

P S Cally and M Xiong J. Phys. A: Math. Theor. 51 (2018) 025501

https://orcid.org/0000-0001-5794-8810
https://orcid.org/0000-0001-5794-8810
https://doi.org/10.1086/379789
https://doi.org/10.1086/379789
https://doi.org/10.1086/379789
https://doi.org/10.1134/S1063773707100088
https://doi.org/10.1134/S1063773707100088
https://doi.org/10.1134/S1063773707100088
https://doi.org/10.1051/0004-6361/200912088
https://doi.org/10.1051/0004-6361/200912088
https://doi.org/10.1051/0004-6361/200912088
https://doi.org/10.1051/0004-6361:200810541
https://doi.org/10.1051/0004-6361:200810541
https://doi.org/10.1051/0004-6361:200810541
https://doi.org/10.1088/0004-637X/812/1/22
https://doi.org/10.1088/0004-637X/812/1/22
https://doi.org/10.1007/s11207-016-0868-3
https://doi.org/10.1007/s11207-016-0868-3
https://doi.org/10.1007/s11207-016-0868-3


18

	 [7]	 Nakariakov V M and Melnikov V F 2009 Space Sci. Rev. 149 119–51
	 [8]	 De Moortel I, Ireland J, Walsh R W and Hood A W 2002 Sol. Phys. 209 61–88
	 [9]	 Nakariakov V M and Verwichte E 2005 Living Rev. Solar Phys. 2 3 
	[10]	 De Moortel I 2009 Space Sci. Rev. 149 65–81
	[11]	 Cally P S 1985 Aust. J. Phys. 38 825–37
	[12]	 Cally P S 1986 Sol. Phys. 103 277–98
	[13]	 Chen S X, Li B, Xiong M, Yu H and Guo M Z 2016 Astrophys. J. 833 114
	[14]	 Andries J, Goossens M, Hollweg J V, Arregui I and Van Doorsselaere T 2005 Astron. Astrophys. 

430 1109–18
	[15]	 Erdélyi R and Verth G 2007 Astron. Astrophys. 462 743–51
	[16]	 Ruderman M S and Roberts B 2002 Astrophys. J. 577 475–86
	[17]	 Smith J M, Roberts B and Oliver R 1997 Astron. Astrophys. 317 752–60
	[18]	 Van Doorsselaere T, Debosscher A, Andries J and Poedts S 2004 Astron. Astrophys. 424 1065–74
	[19]	 Verwichte E, Foullon C and Nakariakov V M 2006 Astron. Astrophys. 446 1139–49
	[20]	 Priest E R 1982 Solar Magnetohydrodynamics (Dordrecht: Reidel)
	[21]	 Gerschgorin S 1931 Izv. Akad. Nauk. USSR Otd. Fiz.—Mat. Nauk. 6 749–54
	[22]	 Golub G H and van Loan C F 1996 Matrix Computations 3rd edn (Baltimore, MD: Johns Hopkins 

University Press)

P S Cally and M Xiong J. Phys. A: Math. Theor. 51 (2018) 025501

https://doi.org/10.1007/s11214-009-9536-3
https://doi.org/10.1007/s11214-009-9536-3
https://doi.org/10.1007/s11214-009-9536-3
https://doi.org/10.1023/A:1020956421063
https://doi.org/10.1023/A:1020956421063
https://doi.org/10.1023/A:1020956421063
https://doi.org/10.12942/lrsp-2005-3
https://doi.org/10.12942/lrsp-2005-3
https://doi.org/10.1007/s11214-009-9526-5
https://doi.org/10.1007/s11214-009-9526-5
https://doi.org/10.1007/s11214-009-9526-5
https://doi.org/10.1071/PH850825
https://doi.org/10.1071/PH850825
https://doi.org/10.1071/PH850825
https://doi.org/10.1007/BF00147830
https://doi.org/10.1007/BF00147830
https://doi.org/10.1007/BF00147830
https://doi.org/10.3847/1538-4357/833/1/114
https://doi.org/10.3847/1538-4357/833/1/114
https://doi.org/10.1051/0004-6361:20041832
https://doi.org/10.1051/0004-6361:20041832
https://doi.org/10.1051/0004-6361:20041832
https://doi.org/10.1051/0004-6361:20065693
https://doi.org/10.1051/0004-6361:20065693
https://doi.org/10.1051/0004-6361:20065693
https://doi.org/10.1086/342130
https://doi.org/10.1086/342130
https://doi.org/10.1086/342130
https://doi.org/10.1051/0004-6361:20041239
https://doi.org/10.1051/0004-6361:20041239
https://doi.org/10.1051/0004-6361:20041239
https://doi.org/10.1051/0004-6361:20053955
https://doi.org/10.1051/0004-6361:20053955
https://doi.org/10.1051/0004-6361:20053955



