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Abstract

For realistic magnetohydrodynamics (MHD) simulation of the solar active region (AR), two types of capabilities
are required. The first is the capability to calculate the bottom-boundary electric field vector, with which the
observed magnetic field can be reconstructed through the induction equation. The second is a proper boundary
treatment to limit the size of the sub-Alfvénic simulation region. We developed (1) a practical inversion method to
yield the solar-surface electric field vector from the temporal evolution of the three components of magnetic field
data maps, and (2) a characteristic-based free boundary treatment for the top and side sub-Alfvénic boundary
surfaces. We simulate the temporal evolution of AR 11158 over 16 hr for testing, using Solar Dynamics
Observatory/Helioseismic Magnetic Imager vector magnetic field observation data and our time-dependent three-
dimensional MHD simulation with these two features. Despite several assumptions in calculating the electric field
and compromises for mitigating computational difficulties at the very low beta regime, several features of the AR
were reasonably retrieved, such as twisting field structures, energy accumulation comparable to an X-class flare,
and sudden changes at the time of the X-flare. The present MHD model can be a first step toward more realistic
modeling of AR in the future.
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1. Introduction

The structures of a magnetic field and their evolution above
the solar surface are the consequences of the solar-surface
magnetic field and plasma motions varying continuously in
time. On a global scale, coronal streamers and coronal holes are
evidence of gradual long-term evolution on the solar photo-
sphere, such as the poleward migration of magnetic flux, solar
differential rotation, and meridional circulation. On a small
scale, the dynamics of the solar active region (AR) is primarily
controlled by the emergence, development, and complex
motions of strong magnetic field polarity pair(s). Typically,
the timescale of the solar-surface magnetic field evolution is
much shorter than the magnetic relaxation time (i.e., dissipa-
tion): therefore, the evolution of the photospheric magnetic
field results in non-potential magnetic field structures above the
photosphere that can be a cradle of energy build-up processes.
The magnetic free energy, often at the compact central regions
of the AR system, can be suddenly released through, probably,
a rapid magnetic reconnection process, to accelerate and/or
heat the plasma, which is observed as a solar flare (e.g.,
Schrijver 2016).

To better understand the dynamics in an AR system, it is
desirable to have observation-based three-dimensional descrip-
tions and depictions of the magnetic field and plasma there. In
general, however, direct measurements of the AR magnetic
field above the solar photosphere are limited because of the
signals from the target volumes are weaker than the (noise)
signals from the photosphere. Several modeling approaches
have been developed to determine the three-dimensional
structure from photospheric conditions that can be much more
accurately measured (see Guo et al. 2017 and references
therein).

One approach is to apply the vacuum-limit assumption,
which reasonably represents the very low-β situation in the
solar corona (b p= ( )P B 8g

2 ). Under the vacuum-limit
assumption, several models, such as the potential field (PF)
model (Schmidt 1964; Altschuler & Newkirk 1969; Schatten
et al. 1969; Sakurai 1982), linear force-free field model
(Nakagawa et al. 1971; Nakagawa & Raadu 1972), nonlinear
force-free field (NLFFF) model (e.g., Sakurai 1981; Regnier &
Canfield 2006; Wiegelmann et al. 2006, 2012; Bobra et al.
2008), and non-force-free field (NFFF) model (e.g., Hu &
Dasgupta 2008; Duan et al. 2017), have been developed. In
many cases, these models can directly use data from the
photospheric magnetic field observation as boundary values,
which allows one to set up a realistic situation at an instant
and/or region of interest. In many studies using these vacuum-
limit models, the temporal variation of the modeled system can
be traced by calculating time-series solutions of a static
extrapolation, each of which is independent. Hence, the
variations obtained by these vacuum-limit models are, although
overall quite reasonable, not exactly the temporal evolution of
the nonlinear sub-Alfvénic system, where a state at a certain
instant is affected by states in earlier times.
Another more physics-based but computationally expensive

approach is to apply a time-dependent magnetohydrodynamics
(MHD) simulation. The MHD model approach (cf., Janvier
et al. 2015 and references therein) is probably the only strategy
to assess straightforwardly the interaction between the plasma
and magnetic field in the sub-Alfvénic region, and hence their
temporal evolution in the AR system.
There are two types of the so-called MHD models. In the

first type, the plasma density and temperature are taken into
account but are not solved explicitly (for example, by assuming
they are constant and/or proportional to the local field
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strength). Omitting the plasma from the governing equation
system is allowed when studying the solar AR, where the
β ratio is very low. This type of modeling, typically through
relaxation schemes, can obtain solutions for magnetic field
structures that satisfy the Lorentz-force-free and divergence-
free conditions (e.g., Inoue et al. 2012; Jiang et al. 2013b; Zhu
et al. 2013) to examine the structure of a highly nonlinear state
of AR magnetism and the stability of the magnetic system and
to trace its temporal evolution (e.g., Cheung & DeRosa 2012;
Guo et al. 2012; Gibb et al. 2014; Inoue et al. 2014; Jiang et al.
2014; Yeates 2014).

The other type of MHD model fully solves the MHD
equations, including the plasma quantities, explicitly. Being
capable of handling magnetosonic waves and including gravity,
the full- and time-dependent MHD model can be the best
choice for examining the dynamics of a sub-Alfvénic AR
system responding to time-evolving solar-surface boundary
conditions. There have been several successful efforts using
full three-dimensional time-dependent MHD simulation models
(e.g., Wu et al. 2006, 2012; Aulanier et al. 2010; Fan
et al. 2011; Yang et al. 2012; Jiang & Feng 2013; Jiang
et al. 2013a; Galsgaard et al. 2015) that can reproduce several
magnetic features in the AR system as observed. This full
MHD method can also reproduce the surrounding magnetic
field structures around the AR, which are believed to be an
important factor in determining whether or not the twisted
system in the core of the AR system will erupt (e.g., Liu &
Hayashi 2006; Liu 2008; Joshi et al. 2014). Coupled with the
heating mechanism, we can also produce detailed structures of
the plasma quantities (e.g., Mok et al. 2005; Bourdin
et al. 2013). Recently, Jiang et al. (2016) successfully simulated
the entire life cycle of an AR, from magnetic flux emergence
and formation to the eruption of a twisted magnetic loop. The
temporally evolving boundary conditions of the magnetic field
can be applied to MHD simulations of the global corona (e.g.,
Feng et al. 2012; Hayashi 2013), interplanetary space (e.g.,
Hayashi 2012; Shiota & Kataoka 2016), and both corona and
interplanetary space (e.g., Feng et al. 2015, 2017), too. These
data-driven MHD models with a time-dependent observation-
based boundary magnetic field distribution can provide us with
detailed, physics- and observation-based three-dimensional
descriptions of the dynamics in the solar corona and solar
wind as a result of photospheric variations (e.g., Harra
et al. 2012).

For data-driven MHD simulations of the AR, one has to first
choose and calculate the boundary driving parameter(s) from
observations. Among several choices allowed, the following
three choices are commonly selected. The first choice is to give
the observation-based magnetic field data directly as the
boundary values. The second one is to determine the plasma
flow and to drive the simulated magnetic field through the
induction equation, ¶ = ´ ´( )B V Bt . The third choice is
to determine the electric field (E) and to drive the magnetic
field as ¶ = - ´B Et .

The motions of the plasma and magnetic field on the
photosphere play critically important roles in the energy supply
throughout the photosphere (e.g., Leka et al. 1996; Kusano
2002; Demoulin & Berger 2003; Kusano et al. 2004). In all
probability, Levine & Nakagawa (1974) were the first to try to
determine photospheric plasma motions from time series of the
photospheric magnetic field and through the induction
equation. Since then, several sophisticated algorithms have

been developed (see Welsh et al. 2007 and references therein),
for example, the methods using local correlation tracking
(LCT; e.g., Choe et al. 2001; Moon et al. 2002), the minimum-
energy method (Longcope 2004), the inductive LCT method
(ILCT; Welsh et al. 2004), and DAVE4VM (the differential
affine velocity estimator for vector magnetograms; Schuck
2006, 2008). The simulation driven with the solar-surface
plasma motions is, in this way, very attractive. However, the
difference between the observed solar-surface magnetic field
and the simulated one can grow substantially in the case of
long-time simulation runs, at least in our provisional runs with
our MHD model.
The electric field as a boundary driving parameter can allow

us to reproduce exactly the evolution of the observed magnetic
field on the (solar-surface) boundary, within minor numerical
errors (i.e., Fisher et al. 2010, 2012; Kazachenko et al. 2014;
Lumme et al. 2017). Because of the lack of information on the
vertical gradients of the magnetic field on and around the solar
photosphere, however, we need to make assumption(s) to
complete the equation system. In addition, the calculation
algorithm can often be complicated. Therefore, a simple
calculation algorithm capable of reproducing the observed
evolution of the magnetic field is desirable.
In the MHD simulations for the AR, we usually have to limit

the sub-Alfvénic simulation region to limit the needed
computational resources to a reasonable amount. The simula-
tion region is a cubic box with the bottom boundary
accommodating the observation-based quantities as the bound-
ary values, and the top and side boundary surfaces are set.
The periodic boundary condition in the horizontal directions
can be a good choice; however, this choice often results in
unreasonably distorted structures of the simulated magnetic
field and plasma. Therefore, the proper treatment of the sub-
Alfvénic free boundary condition is a must. The projected
normal characteristics method (e.g., Nakagawa & Steinolfson
1976; Nakagawa et al. 1987; Wu & Wang 1987) is a simplified
version of the characteristic-based boundary treatment and can
treat sub-Alfvénic boundary surfaces, including the free
boundary surfaces (on which observation-based constraints
cannot be imposed).
As part of our effort to develop the data-driven MHD model

for the AR, we established a time-dependent three-dimensional
MHD model with two features: the simulated variables are
driven with a bottom-boundary electric field, and the sub-
Alfvénic boundary surfaces are treated with the projected
normal characteristics method.
As required for calculating the solar-surface electric field, the

input solar-surface vector magnetic field should have a sufficiently
short cadence and high spatial resolution to trace magnetic features
on the solar photosphere. The Helioseismic Magnetic Imager
(HMI) on board the Solar Dynamics Observatory (SDO) satellite
(Scherrer et al. 2012; Schou et al. 2012) has been observing the full
disk of the Sun, with about a 1 arcsec angular resolution and 45 s
cadence for the magnetogram and 12minutes or 135 s for the
vector magnetic field, almost nonstop since 2010 May 1. With its
cadence and spatial resolution (∼350 km near the center of solar
disk), the HMI data can offer the desired vector magnetic field data
for tracing photospheric motions with apparent speeds of less
than 0.5 km s−1 (in 720 s cadence observation data). As also
theoretically examined in Leake et al. (2017), therefore, this
cadence is short enough for most solar photospheric phenomena
(a few exceptions can be pointed out, such as the emergence of
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horizontally elongated magnetic flux whose photospheric cross-
section can appear as a feature that is often moving faster than the
local photospheric sound speed).

As a case study, we choose the AR NOAA 11158 and
selected a 16 hr span of time from 2011 February 14 20:00 UT
to February 15, 12:00 UT. This region was remarkably very
active, producing an X-class flare that started around 01:44
with its X-ray intensity peak at 01:56 UT on 2011 February 15.
Many M- and C-class flares followed. This X-class flare region
has been widely analyzed and simulated (e.g., Jing et al. 2012;
Sun et al. 2012; Wang et al. 2012; Zhao et al. 2014). Figure 1
shows the SDO/AIA 193Å images (Lemen et al. 2012), taken
over the 16 hr span.

This paper is organized as follows. In Section 2, we briefly
describe the HMI vector magnetic field data used in this study.
In Section 3, the method for calculating the electric field usable
in a data-driven MHD simulation is described. The difference
equations for retrieving the temporal variations of the magnetic
field vector on the bottom boundary are given in Appendix A.
In Section 4, the framework of the present model, a time-
dependent three-dimensional compressive MHD simulation
model, and the treatments for the top and side boundary
surfaces are described. Appendix B details the characteristics-
based treatments for the sub-Alfvénic top and side free
boundary surfaces. In Section 5, the simulation results are
presented. The discussion and summary are given in Section 6.

2. Observation Data: HMI Vector Magnetic Field Data

From the HMI measurements at the 6173Å Fe I line, three-
component vector magnetic field data are regularly produced
at the Joint Science Operations Center (JSOC) data pipeline.
The data products are available at the HMI/JSOC database
(http://jsoc.stanford.edu/ajax/lookdata.html). In the data

process, the VFISV (Very Fast Inversion for Stokes Vector;
Borrero et al. 2011) is applied to calculate the parameters of
the magnetized solar atmosphere, such as the strength,
inclination, and azimuth angles of the magnetic field, line
depth and width, and line-of-sight Doppler velocity (Centeno
et al. 2014). Then, the 180° ambiguity in the azimuth angle is
solved by means of the minimum-energy algorithm (Metcalf
1994; Leka et al. 2009) to finally yield three components of
the magnetic field over the solar disk. The HARP (HMI
Active Region Patch; M. Turmon et al. 2017, in preparation)
module can automatically recognize magnetically active
regions, and the SHARP (Space weather HARP; Bobra
et al. 2014) module calculates various space-weather indices,
such as surface integrations of current helicity, and other non-
potentiality indices, such as the Lorentz force, within the AR
recognized by the HARP module. Details of the HMI vector
magnetic field data products and processes are given in
Hoeksema et al. (2014).
The SHARP CEA (cylindrical equi-area) data sets, which

are a subset of the SHARP products, are constructed in
the local spherical coordinate frame moving with solar diff-
erential rotation. We used the data set identified as hmi.
SHARP_720s_CEA[377][] at the JSOC database with the
internal serial number 377 for AR 11158. Three segments
(subsets) of this data set, Br, Bt, and Bp, which represent the
radial (Br), latitudinal (Bθ), and longitudinal (Bf) components,
respectively, are used. In this study, we use a simple
conversion from local spherical coordinates to the Cartesian
coordinates: Bx(= Bf), By(=−Bθ), and Bz(= Br).
We use a series of 81 data maps of the 12 minute cadence

observation data that cover in total a 16 hr period starting from
2011 February 14, 20:00 UT. Figure 2 demonstrates the vector
magnetic field data at the first instant of this period. During this
selected period, an X-class flare occurred around February 15,

Figure 1. AIA 193 Å images taken every two hours starting on (a) 2011 February 14, 20:00 UT until (i) 2011 February 15, 12:00 UT. The X-class flare started around
01:44 UT on February 15 and reached the X-ray intensity peak around 1:56 UT.

3

The Astrophysical Journal, 855:11 (16pp), 2018 March 1 Hayashi et al.

http://jsoc.stanford.edu/ajax/lookdata.html


01:47 UT (t=+5.78 hr), near the central meridian viewed
from the Earth. The original dimensions of the SHARP CEA
data maps are 744 and 377 for the longitudinal direction (or the
x-direction) and the latitudinal direction (or the y-direction),
respectively. In order to reduce the required computational
resources, we smoothed the maps spatially with the Gaussian
function with a half width of six-pixel size (approximately
2900 km) and reduced the pixel number by 94 to 186 (1440 km
per pixel) with boxcar averaging.

3. Electric Field on the Bottom-boundary Surface

Because we do not have a sufficient amount of information,
particularly on the vertical gradients of the magnetic field
around the photosphere, assumptions have to be made to
complete the equation system. Among the possible choices
allowed, the poloidal–toroidal decomposition method (i.e.,
Fisher et al. 2010) is probably the most promising method for
this purpose. A set of convenient presentations of the poloidal–
toroidal decomposition of the magnetic field variations and the
associated electric field is provided in Fisher et al. (2012).

In data-driven simulations, one does not have to determine
the electric field on a certain plane (i.e., the bottom-boundary
surface). Instead, we want to assign the electric field vector at
different heights, that is, at the bottom-boundary reference
height (at z= 0) and at the top and bottom cell face centers (at
z=±Δz/2), in such a way that the derived vector quantity can
be straightforwardly introduced through the spatial differencing
method. Indeed, this computational practice allows for a simple
method, described below.

Any arbitrary vector b given on the x–y plane can be split
into three parts,

= + = + + ( )b b b b b b , 1z h z h h;df ;cf

where bz is the component normal to the plane ( ˆ)zbz , and bh is
the rest horizontal component (parallel to the plane). The
horizontal vector bh can be further decomposed into the
divergence-free component (df) and curl-free component (cf).

Here, we seek the solutions of three vectors, ( )E 1 , ( )E 2 , and ( )E 3 ,
that satisfy

 



´ = - ¢ ´ = - ¢

´ = - ¢ ( )

( ) ( )

( )

E E B

E B

B ,

and , 2
z h

h

1 2
;df

3
;cf

where the variables with a prime (′) refer to the time derivatives
of the observed magnetic field: ¢ =¶( )BBz t z , ¢ =¶( )B B ,h t h;df ;df and
¢ =¶( )B Bh t h;cf ;cf . Figure 3 shows the position assignment of

these three parts of the electric field in discretized space. It
should be noted here that the positions could be somewhat
arbitrarily selected: our cell-centered simulation code uses the

Figure 2. Demonstration of the HMI vector magnetogram data around the primary PIL, at the first instant of the selected 16 hr period (2014 February 14, 20:00 UT).
The blue (red) color on the surface represents the positive (negative) polarity, and the colors are given proportional to the square root of Bz, so that the colors at weak
field values are enhanced. The direction and length of the brown lines, which start from the data points with ∣ ∣B 300 G or -300 Mx cm 2, indicate the direction and
strength of the surface field, respectively. Each brown line is attached to a transparent yellow triangle that is perpendicular to the bottom surface to enhance the three-
dimensional sense for viewers.

Figure 3. Positions of the electric field and the other vectors assigned in the
discretized simulation grid system. The first part, ( )E 1 , is calculated at the
position of the cell center and is used to update Bz on the surface and at the first
grid above it. The second part is assigned to the horizontal interface between
the grids on the bottom boundary and used to update Bx and By on the bottom-
boundary surface. The third part is at the cell interfaces with the neighboring
grids in the vertical direction, and used to update Bx and By on the bottom
boundary, and all three components at the grids above next to the bottom
boundary.
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electric field vectors, assigned or interpolated, at the center of
the cell face or edge. The vector potential expression for the
magnetic field may prefer the vectors at the edges and/or
vertices.

The first part of the electric field, ( )E 1 , has only two
horizontal components. The vertical component of its curl
matches the temporal variation of the vertical component of the
magnetic field,

 ´ = - ¢ˆ · ( ) ( )( )z E B . 3z
1

For simplicity, its vertical gradient is assumed to be zero,

¶
¶

= ( )
( )E
z

0. 4
1

This component can be calculated as

= ´ Yˆ ( )( ) ( )E z , 51 1

where Ψ(1) is a scalar solution of a two-dimensional Poisson
equation,

 Y + ¢ = ( )( ) B 0. 6h z
2 1

The second part ( )E 2 only has a vertical component and is
placed at the center of the horizontal interface between the
boundary numerical grid cells. Its curl matches the temporal
evolution of the horizontal divergence-free component of the
horizontal components of the magnetic field,

 ´ = - ¢ ( )( )E B . 7h
2

;df

The electric field is given as

= - Yˆ ( )( ) ( )E z , 82 2

where Ψ(2) is a scalar solution of the Poisson equation,

 
 

Y + ´ ¢ =

Y + ´ ¢ =

ˆ · ( )
ˆ · ( ) ( )

( )

( )

z B

z B

0,

hence 0. 9
h h h

h h h

2 2

2 2
;df

The expressions for the first two electric field vectors, ( )E 1 and
( )E 2 , are basically the same as or very similar to those in Fisher

et al. (2010, 2012).
To determine the third remaining part, ( )E 3 , we assume that

the divergence of the horizontal components of the magnetic
field is straightforwardly related to the vertical gradient of the
vertical component of the magnetic field through the
divergence-free condition ( =· B 0),

 



¶
¶

= -
¶
¶

¶
¶

= - ¢

¶
¶

¶
¶

= - ¢

· ·

· ( )

( )

( )

B B

B

B

z z

B

t

z

B

t

, hence

or . 10

z
h h

z
h h

z
h h

3

3

;cf

Because the observed temporal evolution of Bz is completely
reproduced by only the first part ( ( )E 1 ), we want the
contribution of the third part at the height of the bottom-
boundary surface (z= 0) to be zero. These two constraints can
be satisfied when we define the additional temporal evolution

of the simulated Bz on the upper and lower faces as



D
D

= -
D
D

= - D ¢

= D =- D

· ( )

( )

( )

( )

( )

B

B

t

B

t

z
1

2
, 11

z

z z

z

z z

h h

3

1 2

3

1 2

;cf

where Δz and Δt are the vertical size of the numerical cell and
the observation data cadence (720 s in this study), respectively.
Notice that this formula is equivalent to assuming that the
diverging (converging) temporal evolution of the horizontal
magnetic field components through the side boundary surfaces
will be balanced by the vertical one converging (diverging)
through the upper and bottom numerical cell faces evenly.
Under this assumption, the third part of the electric field at the
height z=+Δz/2 is given as, in a manner similar to that for
the first part,

= ´ Y=+D∣ ˆ ( )( ) ( )E z , 12z z h
3

2
3

with the scalar solution of the Poisson equation,

   Y -
D ¢ = Y -

D

¢ =

·

· ( )

( ) ( )B

B

z z

2
0 or

2
0. 13

h h h h h

h cf

2 3 2 3

;

The electric field at the height z=−Δz/2 is given as

= -=-D =+D∣ ∣ ( )( ) ( )E E . 14z z z z
3

2
3

2

We use an iterative differencing method to solve the three
Poisson equations, in which the equation ¶ Y = Y +t Sh

2

(S is a source term and τ is non-physical pseudo-time) is solved
until the scalar solution sufficiently converges.
The vertical component of the magnetic field, Bz, at the

(n+1)th time step is calculated through a curl on the x–y
plane,

= - ´ D+ ( ) ( )( )EB B t, 15z
n

z
n

h
1 1

and the evolution of the horizontal components, Bx and By, are
given through curls of the electric field vectors on the y–z and
z–x plane, respectively,

= - ´ + D+ ( ) ( )( ) ( )B B E E t. 16h
n

h
n1 2 3

In Appendix A, it is shown that the curl operations for the three
electric field vector parts yield the target temporal evolution of
the magnetic field. It should be mentioned that the three electric
field vectors are designed to be used together: for example, one
may want to use only the first part when only Bz data are
available; however, only Bz is driven with the curl of ( )E 1

whose horizontal components are assumed to be zero
(¶ =( )E 0z

1 ). To drive the other two horizontal components
in a physically consistent manner, one has to remove the
assumption of zero vertical gradient and construct difference
equations of the curl of ( )E 1 accordingly.
To preserve the divergence-free condition, the temporal

variation of the magnetic field at the height z=1· Δz (next to
the bottom boundary) are calculated by summing contributions
from both the simulated MHD variables (that is, V and B) and
the driving electric field given at the height z=+(1/2)Δz
(given in Equations (5) and (14)). The energy density,  , is
adjusted in accordance with the difference of the square of the

5

The Astrophysical Journal, 855:11 (16pp), 2018 March 1 Hayashi et al.



magnetic field strength updated with and without additional
electric field vectors at z=+(1/2)Δz.

Ideally, the electric field estimation should not include any
parameters that are given for computational reasons. In our
estimation, however, the third part of the electric field ( ( )E 3 ) has
a parameter Δz that is not physics based or observation based.
This came from an implicit, and inevitable, at least in this
study, assumption that the horizontal components of the
magnetic field Bh and its temporal variation are uniform in
the vertical direction (or their vertical gradients are zero) within
the vertical numerical grid size. Unless additional constraint(s)
on the gradient are given from observations and/or theoretical
approaches, this assumption is inevitable.

Figure 4 shows scatter plots of the three components of the
observed and reproduced magnetic field at several instants to
demonstrate how well the derived electric field vector can
reproduce the observed temporal evolution of the boundary
magnetic field. Overall good agreements between the repro-
duced values and observations are found. Except for Bx and By

at t=0, the correlation coefficients are about 0.99, with very
small offsets. Small displacements from the diagonal are due to
the errors in spatial differencing in the iterative Poisson solver
in the bounded domain. Cleaning the divergence of B and the
errors in estimating the third part (Equation (31)) contributes to
the scatter in the horizontal components to some extent. The
magnitude of the cumulative errors is reasonably small even at
the 75th frame of the data map (at t=+15 hr), in spite of the
fact that the error is essentially accumulative with respect to
time. Hence, we can conclude that the methodology is
appropriate.

The plots in Figure 5 show the simulated Bz maps at t=0
and t=+15 hr around the center of the bottom-boundary
surface. Several features of the observed evolution, highlighted
with a yellow circle and horizontal line, are indeed reproduced.
The middle row in Figure 6 shows the distribution of the
differences in the three components of the reproduced and
observed magnetic field vectors at t=+15 hr. Differences of
noticeably large magnitude are found at strong-field regions,
although overall the disagreements are relatively small: the
99th percentile of the ratio of the absolute difference to the
absolute value of observation data at >∣ ∣B 200 G was 0.07,
which is reasonably acceptable. The magnitude of the
disagreements can probably be reduced further if the staggered
grid system is properly applied in the iterative Poisson solver.

4. Model Framework

4.1. Time-dependent MHD Simulation

The governing equations are the ideal compressive MHD
equations under the gravity of the Sun,
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The variables  V B, , , Pg,  , t, g, and γ are for the mass density,
velocity of plasma flow, vector of the magnetic field, gas
pressure, energy density (= g p+ - +( ) ( )V P B2 1 8g

2 2 ),
time, constant gravity of the Sun (= 274 m s−2), and specific
heat ratio, respectively. A colon between two vectors (· : ·) stands
for the operation of the dyadic tensor product.
The terms with  · B are added to the right-hand side

except the continuity equation, in order to reduce the effects of
the numerical nonzero divergence of the magnetic field (e.g.,
Brackbill & Barnes 1980; Powell 1994). The numerical
divergence of the magnetic field is reduced with a partial
divergence cleaner (see Hayashi 2005). The specific heat ratio
γ is set constant and given as γ=1+γf with the fractional
part γf set at 1.0·10−3 to mimic the near-isothermal
circumstances in the solar corona. Under this near-isothermal
assumption, the thermal energy density, g g- =( )P P1g g f ,
can be comparable to the magnetic energy density at strong
magnetic field regions, which helps reduce the chance of
computational failures due to the negative gas temperature. In
the future, instead of the polytrope model, we would like to
introduce physics-based descriptions of coronal heating and
heat conduction (e.g., Usmanov et al. 2000, 2011; Mok
et al. 2005; Bourdin et al. 2013), which are desirable and
essential for realistic modeling.
The numerical schemes used here are mostly the same as

those in our MHD code for the global solar corona and solar
wind (Hayashi 2005; Hayashi et al. 2008), where several
commonly used concepts and strategies, such as the Total
Variation Diminishing (e.g., Harten 1983; Brio & Wu 1988),
Monotonic Upstream Scheme for Conservation Laws (van Leer
1979), and Finite Volume Method (e.g., Tanaka 1995), are
used. The Courant–Friedrichs–Levy number is set to 0.4, and
computational parallelism is achieved by using MPI and
OpenMP.
The Cartesian simulation region has six boundary surfaces,

all of which are sub-Alfvénic. For the bottom-boundary surface
on which the initial magnetic field and time-dependent electric
field are specified, we assume that the plasma density and
temperature are fixed and uniform all through the simulation.
For further simplification, the plasma flow on the bottom
boundary is set to be zero everywhere so that the sinusoidal
condition (e.g., Yeh & Dryer 1985) can be always satisfied
without any further treatments.
To drive the bottom-boundary magnetic field with the calculated

electric field, the induction Equation (19) is replaced with

¶
¶

= - ´ ( )B
E

t
, 21

where the electric field at the right-hand side is the sum of all
three parts, = + +( ) ( ) ( )E E E E1 2 3 . It must be mentioned that
this replacement results in the violation of the conditions of an
ideal frozen-in MHD system. It is desirable and important to
include information on photospheric plasma motions to
improve the estimate of the electric field as well as the

6

The Astrophysical Journal, 855:11 (16pp), 2018 March 1 Hayashi et al.



Figure 4. Scatter plots of the simulated and input magnetic field components (Bx, By, and Bz) on the bottom-boundary surface, within±500 G, at t=0, t=+720 s,
t=+6 hr, and t=+15 hr. The numbers of simulation grid points with values rounded to multiples of 5G are presented in logarithmic scale with colors, blue for 100,
green for 101, and dark brown for 102. In the E1 simulation step (0 � t � 720 s), the horizontal components are altered from those of the potential field to the
observation-based input values at t=+720 s by the given electric field through the induction equation. The cumulative errors (scatters) at t=+6 hr and t=+15 hr
are noticeable but reasonably small (the standard deviations of the differences are less than 10 G at t = +15 hr).

7

The Astrophysical Journal, 855:11 (16pp), 2018 March 1 Hayashi et al.



injection of kinetic energy, mass, and momentum into the
transition region and corona (e.g., Fisher et al. 2012).

One would want to use a free boundary condition on the four
side boundary surfaces rather than the periodic, mirror, or
insulator boundary condition, because these non-free boundary
conditions can distort the initial magnetic field configuration and
hence substantially affect the simulation results. In our present
model, we applied a modified version of the projected normal
characteristic method (e.g., Nakagawa & Steinolfson 1976;
Nakagawa et al. 1987; Wu & Wang 1987) to the rest of the five
(side and top) boundary surfaces, in order to set up a proper sub-
Alfvénic free boundary condition. The projected normal
characteristic method is a physics-based boundary treatment
used in various studies of solar ARs and the global corona (e.g.,
Wu et al. 1996, 2006, 2012; Feng et al. 2012; Yang et al. 2012).
Without properly satisfying the characteristic equation system,
unphysical quantities at the ghost cells (outside the simulation
region) can enter the computation region and affect the simulated
variables, and the physical and mathematical incompatibility (or
inconsistencies) can subsequently lead to computational instabil-
ities and unphysical vibrations with large amplitude.

The practical form of the free boundary treatment is given in
Appendix B. In brief, in the projected normal characteristic
method, the temporal variations derived with the ordinary
difference method are decomposed into eight characteristic
equations. Then, the characteristic equations for non-physical
incoming waves are discarded (on the sub-Alfvénic surface, at
least one wave mode is incoming), and the temporal variations
on the boundary surface are reconstructed from only the
outgoing wave modes. These mathematical operations use left
and right eigenmatrices (or a set of left and right eigenvectors)
of the hyperbolic MHD system, which are identical to the one
commonly used in the Godunov-type linearized Riemann
solver (e.g., Cargo & Gallice 1997).

To examine the capability of the free boundary treatment, we
conduct a test simulation in which a plasma perturbation is
given to the center of the simulation region with the initial
value setting (described in the next section) to examine how
well the induced pulse is treated. Figure 7 shows the vertical
component of the plasma flow, Vz, in the z–t diagram derived
from this test simulation. No noticeable reflections can be seen

at the top boundary where the free boundary treatment is
applied. The same non-reflective boundary condition is
achieved on the four side boundary surfaces, too.

4.2. Simulation Settings and Initial Values

In this paper, the temperature and hydrogen atom (proton)
number density are set as = T MK20 and N0=10

12 cc–1, respe-
ctively, on the bottom-boundary surface (at z= 0 km). The
simulated variables are normalized (nondimensionalized) with
the factors V0(= g =k T m2 182.6 kmb p0 ) for velocity, t0
(=Z0/V0=490.7 s) for time, and B0 (= pg =N k T8 b0 0
83.3 Gauss) for magnetic field, where kb and mp are the
Boltzmann constant and mass of proton, respectively.
With the near-isothermal polytropic setting (with γ∼ 1), the

assumed temperature ( MK2 ) and substantially smoothed
boundary magnetic field distributions, this present simulation
study primarily simulates the lower corona above the solar
transition region. This simulation setting allows us to avoid
tentatively including computationally expensive components,
such as physics processes with very short timescales (e.g., heat
conduction, radiation, ionization and opacity, and Alfvén wave
decays) and very steep vertical gradients of plasma quantities.
The solar transition region is of great importance for estimating
thermal and kinetic fluxes, and for better, more realistic
simulations, we would try to include it in the future.
In many simulation models of the global solar corona, the

plasma number density is typically set to be 108 counts cc−1.
However, with the number density of 108 counts cc−1, the
Alfvén speed at a typical 1000 G magnetic field is about 0.3 of
the speed of light, and unfortunately, our time-dependent MHD
simulation model cannot handle such high Alfvén speed and
low beta regime. After several provisional tests, we chose a
much larger number, 1012 counts cc−1, as a compromise for
mitigating computational difficulties. With this value of the
number density, a typical smallest value of the β ratio is about
1/400 at a 1700 G field (99th percentile ∣ ∣B over all resized data
maps used), and the Alfvén speed at 1000 G field (96th
percentile strength) is reduced to the order of 103 km s−1.
The grid sizes in the vertical direction Δz is set equal to that

in the horizontal direction (Δx=Δy= 1400 km, i.e., four
times as large as the original HMI SHARP data grid size). The
number of simulation grid cells in the x, y, and z directions is
186+30×2, 64+30×2, and 64, respectively, with a
30 grid width horizontal buffer where we place zero values of
the magnetic field and electric field on the bottom-boundary
surface. This buffer is set to avoid complex treatments at the
edges and corners of the bottom-boundary surface. The sizes of
the simulation region in the x, y, and z directions are, hence,
354,240 km (X0= 246Δx), 178,560 km (Y0= 124Δy), and
89,600 km (Z0= 64Δz), respectively.
The initial plasma is at hydrostatic equilibrium under

constant solar gravity. The initial magnetic field is the PF that
is calculated through an iterative, three-dimensional Laplace
solver,

t
 ¶F

¶
= F· ( ), 22

with the boundary conditions ¶ F = -Bz z on the bottom-
boundary surfaces (at z= 0) and ¶ F = =( { })x x y z0 , ,x i

2
i

on
the other side and top boundary surfaces. The values of the

Figure 5. Enlarged maps of the vertical component of the simulated magnetic
field (Bz) near the central part of the AR at times t=0 and t=+15 hr. A
horizontal yellow line and a circle are placed, at the same positions in panels
(a) and (b), to highlight the evolution. In panel (b), a yellow cross is placed at
the position where the simulated data are sampled for Figure 13.
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potential scalar Φ are placed at the centers of the cell face in
the vertical direction, (iΔx, jΔy, (k+ 1/2)Δz), so that the
observation-based boundary Bz can be straightforwardly
introduced as the boundary condition on the bottom boundary.
The PF vector is calculated as the gradient of the scalar
potential, = - FB .

4.3. Simulation Steps

The horizontal components of the initial PF configuration on
the bottom boundary do not match the observation data. Hence,
in order to simulate the AR system as realistically as possible,
we introduced the three steps of the simulation as follows. In
the first step (hereafter labeled as the E1 step), starting with the
PF, we simulate the MHD variables with the E-driven

simulation for 720 s, using the electric field vector maps
derived from the difference between the PF vector (whose Bz

are identical to the observation) at t=+0 s and three
components of the magnetic field data map at t=+720 s. At
t=+720 s, all three components of the magnetic field on the
bottom boundary become almost the same as those of the
observed data map at t=+720 s, as seen in plots in Figure 4.
In the second step (hereafter labeled the E0 step), the E-driven
simulation is continued but with zero electric field, =E 0, until
the simulated system reaches a well-relaxed state (with the
largest residual plasma motion of 0.01 Alfvén speed). Because
the bottom-boundary magnetic field is fully controlled by the
given E, all three components of the boundary B are fixed
throughout this step. In the third step (hereafter labeled the
E2-step), the E-driven simulation (identical to the E1 step,
except for values of the boundary E) restarts from the relaxed
state with the observation-based (nonzero) electric field to
simulate the AR system responding to the variation of the
observed solar photospheric magnetic field at t>+720 s.
Within each 720 s interval over the 16 hr period, the given
electric field is fixed. When the simulated time t reaches the end
of each interval, the time step is adjusted so that the total time
will be exactly a multiple of the HMI data interval.
To speed up the simulations, we increase the magnitude of

the boundary electric field by a factor of five, and instead
shorten the simulation interval from 720 to 144 s. This
shortened interval is shorter than the normalization factor of
time, t0=490.7 s), which is equal to the Alfvén speed for a
typical magnetic field strength (B0) and density (N0). Because
the magnetic field at the central part of the sunspot region is
stronger than B0, the travel time of Alfvén waves across the
simulation box is comparable to or shorter than 144 s.
Furthermore, the characteristic-based boundary treatments have
significantly reduced wave reflections at the sub-Alfvénic
boundary surfaces, and hence the influence of this speed-up

Figure 6. Maps of the three components of the magnetic field at t=+15 hr. The smoothed observation data are shown in the top row, and the simulated magnetic
field is shown in the bottom row. In the middle, the differences between the two are shown. The colors (blue for positive polarity, and red for negative polarity) are
proportional to the square root of the absolute values and truncated at 500 G. Small nonzero values of the simulated Bx and By at the buffer regions are due to the
nonzero initial values of the PF.

Figure 7. Time–height (t–z) diagram of Vz derived from the simulation for
testing the ability of the projected normal characteristic method applied to the
top sub-Alfvénic boundary surface. The blue (red) color stands for upward
(downward) Vz. A spherical perturbation (five-times enhancement of the
plasma pressure or temperature) is given at the center of the simulation box.
The size and height of the perturbation are denoted with a thick green line at the
leftmost part of the plot. The explosion and implosion flows generated by the
perturbation pass through the sub-Alfvénic top boundary without any
noticeable reflections.

9

The Astrophysical Journal, 855:11 (16pp), 2018 March 1 Hayashi et al.



trick is minimized. Therefore, the generality of the magnetic
field and plasma quantities will be well preserved.

5. Simulation Results

In this section, a few features noticeable in the simulation
result data derived through steps E0, E1, and E2, are
demonstrated.

Figure 8 shows the simulated magnetic field lines in the
course of the E1 and E0 steps. Starting with the PF
configuration, the simulated magnetic field gradually gains
non-potential features, such as twists, particularly around the
primary polarity inversion line (PIL; near the center of the
boundary data maps). The magnetic field in the surrounding
regions also displays the changes in connectivity region to a
large scale; some field lines starting from a large spot region to
the side boundary surfaces in the PF solution reach the region
of the other polarity on the bottom-boundary surface, for
example. Overall, the amount of magnetic flux closed within
the simulation region increases in comparison with the PF,
minimum-energy state. It is probable that the magnetic field
structures of the relaxed state (plot (d)) are substantially
different from the NFLLL or other force-free solutions; the
time-dependent MHD model, in an ideal case, retains the
connectivity in the course of the simulation run (except for
the changes caused by the numerical viscosity). Hence, our
setting (of the initial PF configuration) actually defines in
advance many aspects of the resultant relaxed state. None-
theless, the relaxed state (with residual plasma motion of about
3 km s−1 near the main PIL) is a suitable MHD state as a
starting point of the E2 E-driven steps for t>720 s.

The temporal evolution of magnetic field lines at t�720 s
(in the simulation step E2) is shown in Figure 9, in the same
format as in Figure 8. As shown in Figure 5, the variations of
the solar-surface magnetic field over the 16 hr period are not
substantially large on a global scale, and hence the overall
evolution of the magnetic field lines is not noticeably large.
Still, as shown in Figure 10, the magnetic field near the primary
PIL changes substantially: weakly twisted features of relatively
short field lines at t=+720 s are gradually stretched along the
PIL, and horizontal field lines already elongated at t=+720 s
are kept aligned along the PIL.
The plasma flow velocity (V ) and current density

( = ´J B) are important in the dynamics of the AR system.
Figure 11 shows the simulated plasma velocity (V ), magnetic
field (B), and the current density ( = ´J B) at z=
7000 km (fifth from the bottom-boundary surface) and t=
+4 hr. In plots (a) and (b), the horizontal components of the
plasma flow exhibit somewhat complicated distributions near
the center. On the other hand, the vertical component is rather
organized: in plot (c), plasma motions that are upward (positive
Vz, blue-colored in plot) in the northern (upper) half and
downward (red-colored) in the southern part are noticeable.
This tendency is more clearly seen near the center, where the
upward motions in the region of negative Bz and downward
motions in positive Bz are seen. This is because the magnetic
field evolution is not even over the main PIL at earlier times.
The magnetic field components become rather smoothed in
comparison with the bottom-boundary distributions; however,
some faint spiral lanes of a stronger field emanating from large
strong-field regions are noticeable. Such small-scale magnetic

Figure 8.Magnetic field lines at (a) the initial state (PF configuration), (b) the end of the E1 step, (c) the middle of the E0 step, and (d) the end of the E0 step. Through
step E1, the initial PF magnetic field structure is altered due to the electric field. The related state in panel (d) displays many noticeable features, such as twisted field
lines near the main PIL and expanded overlying field lines in the surrounding regions, generated through the E0 step. The viewpoint is set 15° northward off from the
top direction, in order to mimic the view of the AR in the solar southern hemisphere seen from the Earth.
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field structures are responsible for the current distributions in
plots (g)–(i), where the current distributions are roughly aligned
along the magnetic field distributions. These features derived
with a time-dependent three-dimensional full MHD model will
help enhance our understanding of the dynamics of the AR
system.

Figure 12 shows the temporal evolution of the magnetic
energy integrated over a one-eighth volume of the simulation
region, {(1/4)X0 � x � (3/4)X0, (1/4)Y0 � y � (3/4)Y0, 0 �
z � (1/2)Z0}. As references, the quantities of the PF (Bp) with
identical bottom-boundary Bz maps are calculated for each
instant. The difference between the total and potential energy,

ò p-( )B B dV 8p
2 2 , or free magnetic energy, around the

central part of the AR system is about 2·1032 erg, which is
comparable to 2.0~2.8·1032 erg as estimated by Kazachenko
et al. (2015) and Sun et al. (2012). The simulation results did
not show noticeable sudden decreases in the total or free
magnetic energy at the time of the X-class flare event. The
reference PF energy did not show substantial temporal
variations over the simulated period, and only a small dip in
the PF total energy is noticeable at the time of the X-class flare.

The photospheric magnetic field was substantially altered by
the X-class flare event (e.g., Sun et al. 2017), and the first
noticeable change in the 12 minute cadence HMI data is
found on 2011 February 15 02:00 UT. A data-driven model
like the present MHD model simulates the responses of the
solar corona to sudden variations in the boundary data, which
are consequences perhaps of the flare (or other impulsive) event
above the photosphere in the actual Sun. In this cause
and consequence framework, in principle, the data-driven
model cannot reproduce the flare event and its photospheric
consequences.

Figure 13 shows the time–height (t−z) diagram of the
simulated plasma density and a horizontal component of the
magnetic field, sampled at the position marked with the yellow
cross in Figure 5. The selected data sample position is the
approximate center of the region where the horizontal
components of the HMI vector magnetic field exhibits a
sudden and irreversible enhancement immediately after the
X-class flare event. In this z–t plot, a surge of lower density and
positive By emerges out of the lowermost part of the simulation
region and moves up to the middle height of the simulation
box. Because the speed of the surge is estimated to be about
2.5 km s−1 (or 5Mm/6 hr; about 1% of the local sound speed),
the surge represents the reconfiguration of the global magnetic
field, rather than some sort of shock wave from the flare site or
the impacted solar surface.

6. Summaries and Discussions

In this paper, we describe our time-dependent three-
dimensional MHD model for the data-driven simulation of a
sub-Alfvénic solar AR. As a test, we carried out the simulation
of a solar AR, NOAA 11158. Using HMI vector magnetic field
observation data, we calculate the boundary driving E for this
region by means of a simple and practical algorithm that only
uses a two-dimensional Poisson solver. The calculated
(inversed) boundary E can successfully reproduce the observed
temporal evolution of the (smoothed) solar photospheric
magnetic field. The results of the three-dimensional time-
dependent MHD simulation exhibit reasonable behaviors of the
magnetic field and plasma The evolution of the simulated
magnetic field energy agrees reasonably well with other
independent analyses of the observation data. These suggest

Figure 9. Same as in Figure 8, except for the simulation data at (a) t=+720 s, (b) t=+4 hr, (c) t=8 hr, and (d) t=+12 hr, over the course of the E2 simulation
step. Panel (a) is identical to panel (d) in Figure 8.

11

The Astrophysical Journal, 855:11 (16pp), 2018 March 1 Hayashi et al.



that the simulation framework employed in this study is
reasonably organized and can be a foundation and a basic step
toward more realistic modeling of solar ARs to help enhance
our understanding of the dynamics of AR system, in particular
magnetic energy build-up processes and the sudden release of
magnetic energy (i.e., flares).

In the following, we address the issues and desired
functionalities for future improvements.

With the current settings, the sudden magnetic energy release
was not reproduced, in part because the basic equations do not
include the magnetic resistivity, but mainly because the time-
dependent boundary data do not have any information about
when and where such events happened. In data-driven
simulation models for ARs, we often assume that the solar-
surface magnetic field is the cause of coronal phenomena. In
fact, however, the input data for the bottom sub-Alfvénic
boundary surface contain information on both causes of and
influences from coronal events above the photosphere, and we
do not have any immediate procedures to distinguish the two.
The characteristic-based approach we used for treating the sub-
Alfvénic surfaces can distinguish between the incoming and
outgoing MHD waves passing through a surface, but this
capability is generally limited to the simulated variables and
cannot work for the given observation-based boundary values.
It is desirable to have a method, based on the concept of
characteristics, or is physics or mathematics based, capable of
filtering the photospheric causes (incoming information toward
the corona) and influences (outgoing information from the
corona above) in the observation data of the photosphere.

In principle, the simulated sub-Alfvénic system can retain
memory, at least partially, of the initial value setting that often

contains many assumptions, For example, in the present
simulation study, the connectivity of the magnetic field lines
(e.g., whether two points on the photosphere were magnetically
connected or one end of the field line reaches the side or top
boundary surface) in the initial PF configuration is, at least
partially, kept over the 16 hr simulated period. One reasonable
approach to minimize the influence of this memory effect is to
start the simulation from a much earlier time, as in the work of
Jiang et al. (2016) where the simulation starts before the
emergence of AR sunspots. The use of sophisticated three-
dimensional AR magnetic field modeling, such as NLFFF or
NFFF, as the initial value will be beneficial, too.
The bottom-boundary electric field calculated with our

practical approach can reproduce the temporal evolution of
the observed vector magnetic field. However, we need to be
careful about a few points when using the method for purposes
other than data-driven simulation. The calculated E is not
guaranteed to be always perpendicular to B, and no specific
attention or aids were placed on the gauge uncertainty. In
addition, the method is designed to yield the E assigned at
different positions. This is a convenient and suitable choice for
the differencing methods; however, it is perhaps not suitable
for analyzing and diagnosing the physics conditions on a
particular layer. For example, for the second part
( = Yˆ( ) ( )E z2 2 ), the scalar potential Ψ(2) can be added to any
arbitrary integration constant. In addition, the third part ( ( )E 3 ) is
set zero at height z=0; hence, the surface electric field vectors
are not adequate for estimating the Poynting flux (when
expressed as ´E B) on the bottom boundary. The determined
electric field vectors would be, nonetheless, useful for
determining the (temporal evolution of) vector potential, as

Figure 10.Magnetic field lines near the main PIL, at (a) t=+720 s, (b) t=+4 hr, (c) t=+8 hr, and (d) t=+12 hr. For visibility, the viewpoint is set 10° off from
the solar north direction (the y-axis direction of the simulation system) and 45° off from the top (z-direction), and only the field line segments in the lowermost part
(z�7000 km) are drawn.
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¶ = -A Et , and estimating, with caution, the magnetic
helicity ( ·A B).

In determining the third part of the electric field
(Equations (12) and (14)), we assumed that the surplus
(convergence) of horizontal components of the magnetic field
( · Bh h) is evenly redistributed to the upward Bz on the upper
cell face and to the downward Bz on the lower face. This
assumption is equivalent to explicitly giving the vertical
gradient of the magnetic field and hence its temporal variation.
In the MHD system and the actual corona, the vertical gradient

and, in particular, the advection term (with respect to the
vertical direction, - ¶ BVz z ), are critically important in estimat-
ing the magnetic flux and energy flux supplied through the
photosphere into the solar corona (e.g., Leka et al. 1996; Fisher
et al. 2012); hence, determining the gradient properties in an
observation-based manner is desired. Several analysis methods
mentioned in Section 1 as well as the Doppler velocity
observation can help determine the values of Vz, although we
need extra effort to determine the vertical gradients. For
example, advanced analysis methods (e.g., Frutiger et al. 2000)
can infer the vertical gradients from spectroscopic measure-
ments through the Stokes inversion. Even from the HMI
filtergram measurement, the line-of-sight components of the
magnetic field and Doppler velocity at three different heights
can be retrieved (e.g., Nagashima et al. 2014). Perhaps
simultaneous multi-line observations of the solar surface will

Figure 11. Distribution of the three components of (a)–(c) the plasma flow velocity V , (d)–(f) magnetic field B, and (g)–(i) current density = ´(J B) on the x–y
plane at a height z=7000 km (= 5 · Δz). Dashed lines are placed to assist in comparisons. Blue and red colors represent positive and negative values, respectively,
and the colors are truncated at±5 km s−1 for the velocity,±300 G for the magnetic field, and±0.15 G km−1 for the current density.

Figure 12. Temporal evolution of the magnetic energy integrated over the
selected part of the simulation region,   { ∣( ) ( ) ( )x y z X x X Y, , 1 4 3 4 , 1 4
  ( ) ( ) }y Y z Z3 4 , 0 1 2 . The dashed curve (labeled E1+E0) is for the

total energy over the course of the first two simulation steps, and the thick solid
line (labeled E2) is for the evolution obtained in step E2. The energy of the
potential field (PF) with bottom-boundary maps identical to those in the E2
simulation step is shown with a thin solid line. The dashed–dotted curve is for the
difference between the energy of the E2 simulation step and that of the reference
potential field. The two vertical lines are placed at the approximate time of the
X-class flare event (left) and at the time 02:00 UT (right).

Figure 13. Time–height (t−z) diagram of the plasma density (top) and By

(bottom), sampled at the selected position where substantial changes of the
magnetic field values had been observed immediately after the X-class flare
event. The sampling position is shown with a cross in Figure 5.
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offer direct descriptions of photospheric vertical gradients. One
of our plans is to coordinate with these observations and
analysis methods in order to introduce new observation-based
constraints to the algorithms and improve the entirety of
simulation model. For example, we can evaluate and judge
whether Equation (10) is adequate and learn how to select the
optimal size of the grid cell in the vertical direction (Δz is the
only arbitrary parameter in determining the electric field) such
that we can minimize the discrepancy in Equation (10). We
hope to develop a new boundary model capable of introducing
straightforwardly such observation-based information as con-
straints on the time-dependent boundary values in the future.

We thank the anonymous referee for helpful comments and
suggestions. We use the vector magnetic field data taken by the
HMI and the coronal plasma image data by the AIA on board
the SDO that are publicly available throughhttp://jsoc.
stanford.edu/ajax/lookdata.html. The SDO data are courtesy
of NASA and the SDO science team. This work is partially
supported by the computational joint research program of the
Institute for Space-Earth Environment Research, Nagoya
University, Japan, and some computations for this study were
conducted on the CX400 and FX100 supercomputer systems at
the Information Technology Center, Nagoya University. The
authors are jointly supported by the National Natural Science
Foundation of China (grant Nos. 41374175, 41531073,
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Appendix A
Calculations of the Temporal Derivatives of the

Magnetic Field on the Bottom Boundary

The temporal variation of the vertical component of the
magnetic field, ∂tBz, is determined as the minus curl of the first
electric field, ( )E 1 ,

  
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The temporal derivatives of the divergence-free part of the
horizontal components of the boundary magnetic field are
calculated as
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The agreements between the divergence-free horizontal vectors
are confirmed by comparing an identity form,
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with the Poisson Equation (9),
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The Maxwell equation for the curl-free part of the horizontal
magnetic field components,
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From Equation (13), we obtain
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where C is an arbitrary divergence-free horizontal vector.
Performing a horizontal curl operation on both sides of
Equation (31) yields  ´ =C 0;h hence, C is indeed a
(unique) horizontal two-dimensional PF vector within a
bounded area (data map). A tactic to minimize the magnitude
of disagreement C is to adjust the values of ¢Bh on the outermost
data points of the input photospheric magnetic field map in
such a way that the total ∣ ∣C will be zero or greatly reduced.
However, such an adjustment is usually very complicated, and
may often alter the input data map substantially. In the present
study, we do not include any aids to cancel or reduce this error,
because the magnitudes of C are order of 10 G per 12 minutes,
much smaller than those at the center of the AR system. The
HMI HAPR and SHARP modules choose bounding box sizes
such that the horizontal components of the magnetic field at the
outermost part of the clipped data map are very weak, mostly at
the observation noise level. In addition, the magnitude of the
error vector C might be very small near the center of the
bounded box (data map), because the contribution from data
boundary pixels cancel out.
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Appendix B
Characteristic-based Treatments for the

Free Boundary Surface

Let us write the governing MHD equations in vector-matrix
form,

¶
¶

= -
¶
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+ ( )U F
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U
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t x x x
, 32i i
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i
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where xi is the direction normal to the boundary surface under
consideration, and the vector Fi is the flux vector in the xi
direction. The vector Si in the right-hand side contains all of the
other terms, such as the flux gradients in the other directions
and source terms. The Jacobian matrix J of a hyperbolic MHD
system can be rewritten as

L= ( )J R L, 33

where R and L are the matrix form of the normalized right and
left eigenvectors of the Jacobian J , respectively. The matrix L
is a diagonal matrix of eigenvalues, l l lL = ( )diag , , ,1 2 7 .
The eigenvalues of the Jacobian J of the MHD equation
system are all real and equal to, in non-decreasing order,
λ1=Vi−VF;i, λ2=Vi−VA;i, λ3=Vi−VS;i, λ4=Vi,
λ5=Vi+VS;i, λ6=Vi+VA;i, and λ7=Vi+VF;i, where
the speed of the fast, Alfvén, and slow modes are given

as =VF i; + + + -( ( ) )a b a b a b4 2i
2 2 2 2 2 2 2 , = ∣ ∣V bA i i; ,

and =VS i; + - + -( ( ) )a b a b a b4 2i
2 2 2 2 2 2 2 , with aux-

iliary variables g=a Pg , p=b B 4i i , and =b2

p+ +( ) ( )B B B 4i j k
2 2 2 . The three subscripts i, j, and k

recursively represent the directions in the Cartesian system, x,
y, and z. The eigenmatrices are normalized satisfying the
normalization relationship, = =RL LR I (Roe & Balsara
1996; Cargo & Gallice 1997; and also given in Hayashi 2005).

By operating on the left eigenmatrix L from the left,
Equation (32) becomes
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or a reorganized form,
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represents the wave (or propagation of information) with speed λl.
On the sub-Alfvénic boundary surfaces, the temporal

evolution of physics quantities must be determined only with
the spatial gradients associated with the outgoing waves.
Hence, for the free boundary surfaces, we have to use

information carried by the outgoing wave modes and exclude
information carried by the incoming wave modes.
Here, we organize the free boundary treatment at the surface

xi=0 such that consistency is achieved by discarding the
incoming unphysical eigenwave modes (with positive eigen-
values). Among some possible choices allowed in the concept
of the projected normal characteristics approach, one can
discard the unphysical incoming waves by simply resetting the
right-hand side of Equation (36) with a positive eigenvalue λl
to zero:

* l
=

>⎧⎨⎩ ( )RHS
0 if 0
RHS otherwise

. 37l
l

l

For the other end, the same resetting is applied to the
eigenmodes with a negative λl. By operating on the inverse
of the left eigenmatrix ( -L 1, which is equal to R if properly
normalized) from the left to the characteristic equations with
the modified right-hand side ( *RHSl ), we can regain the
temporal derivatives (¶ Ut ) to be used to update the variables on
the boundary surface. The temporal variation of the normal
component of the magnetic field, Bi, is controlled in accordance
with the sign of its eigenvalue, λl=Vi.
Notice that when the boundary plasma flow is outgoing and

super-Alfvénic, no changes are made, * =RHS RHSl l. Simi-
larly, when the boundary plasma flow is incoming and super-
Alfvénic, all temporal derivatives will be set zero, * =RHS 0l ,
hence all temporal variations should be set zero. The number of
positive and negative eigenvalues on the boundary surfaces is
monitored all through the simulation runs to confirm that
neither of these two extreme cases had occurred in the present
simulation.
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