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We present a newly developed global magnetohydrodynamic (MHD) model to study the responses of the Earth’s magneto-
sphere to the solar wind. The model is established by using the space-time conservation element and solution element (CESE) 
method in general curvilinear coordinates on a six-component grid system. As a preliminary study, this paper is to present the 
model’s numerical results of the quasi-steady state and the dynamics of the Earth’s magnetosphere under steady solar wind 
flow with due northward interplanetary magnetic field (IMF). The model results are found to be in good agreement with those 
published by other numerical magnetospheric models. 
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It is significant to understand the energy transfer process in 
geospace or the interaction of the solar wind-magneto- 
sphere-ionosphere (S-M-I) system, because the develop-
ment of space weather starts basically from such studies. As 
a powerful modeling tool for understanding space weather, 
MHD simulations make up the limitations of single-point 
measurements provided by a spacecraft. Numberless inves-
tigations have been carried out for the simulations of the 
dynamics and configurations of the Earth’s magnetosphere 
under due northward and southward IMF since the seminal 
paper of Dungey (1961). After decades’ development, sev-
eral global magnetospheric MHD models have been showed 
in literature. All these models have been established by 
solving certain forms of the MHD equations with somewhat 
different numerical techniques, such as the GEDAS model 

(Ogino et al., 1994), the Tanaka model (Tanaka, 1994), the 
Block-Adaptive Tree Solar-wind Roe-type Upwind Scheme 
(BATS-R-US) (Powell et al., 1999), the Grand Unified 
Magnetosphere-Ionosphere Coupling Simulation, version 4 
(GUMICS-4) (Janhunen et al., 2012), the Lyon-Fedder- 
Mobarry (LFM) model (Lyon et al., 2004), the Space 
Weather Modelling Framework (SWMF) (Tóth et al., 2005; 
Rae et al., 2010; Liu et al., 2012; Lu et al., 2011, 2013; Jing 
et al., 2014), the Open General Geospace Circulation Model 
(OpenGGCM) (Raeder, 2003) and Piecewise Parabolic 
Method with a Lagrangian Remap MHD (PPMLR-MHD) 
model (Hu et al., 2005; Wang et al., 2012). 

In the early stage, the MHD simulations of the solar wind 
interaction with magnetosphere and ionosphere were carried 
out theoretically by using constant solar wind and IMF as 
input. But in recent years, researchers have tried to model 
real magnetospheric events by using global MHD simula-
tions with comparison against in situ measurements. In 
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these studies, realistic solar wind parameters from observa-
tions were taken as the input to the MHD models. 

Although long periods of steady solar wind with due 
northward or southward IMF rarely appear, the quasi-steady 
state of the magnetospheric configurations under such con-
ditions still draw much attention because they are typical 
states of the highly dynamic magnetosphere. Thus, this 
scenario is what we follow to validate our new model. The 
AMR-CESE-MHD model has been developed for studying 
the solar-interplanetary and the solar active region (e.g., 
Feng et al. (2007); Feng et al. (2012a, 2014) and references 
therein). In this paper, we accommodate it to study the basic 
physical dynamic processes of the interaction of the solar 
wind-magnetosphere-ionosphere system. 

1  Model equations and numerical implementa-
tion 

In this section, the model equations used for studying the 
interaction between the solar wind and the Earth’s magne-
tosphere and the AMR-CESE-MHD method for numerically 
solving the model are described briefly. 

1.1  Model equations 

The AMR-CESE-MHD model for the Earth’s magneto-
sphere is a global coupled model of Earth’s magnetosphere 
and ionosphere. The magnetosphere part solves the MHD 
equations as an initial-boundary-value problem in the region 
from 3 to 156 RE, while the region within 3 RE is treated as 
a magnetosphere-ionosphere coupling region. The physical 
processes in this region are parameterized using simple 
models and relationships. Using constant and uniform 
Pedersen conductance and neglecting the Hall conductance, 
we obtain the ionospheric potential through current conser-
vation. 

The governing equations can be described below: 
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where 1 d,  ,  , ( )p  u   B B B  are the mass density, veloc-

ity, thermal pressure, magnetic field, I is a unit tensor, the 
ratio of specific heats γ is taken to be 5/3, and the energy 

density is 
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Our model is especially designed to simulate planets with 
strong intrinsic magnetic field which solves the deviation of 
the magnetic field from the intrinsic dipole field, that is, B 
is split into time-dependent derived part B1 and time-inde- 
pendent part Bd (Tanaka, 1994), where Bd corresponds to 
the Earth’s intrinsic dipole field with a magnitude of 
3.12×10−5 T at the equatorial surface. 

The Powell source terms  1 10,  ,  ,    B B u u B  

(Powell et al., 1999) and the diffusive control terms 

    1B   (Feng et al., 2011) have been added to the 

MHD eq. (1) to deal with the divergence of the magnetic 
field. Here, following Feng et al. (2001), 
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 where ∆ ,  ∆ ,  ∆x y z  are grid 

spacings in Cartesian coordinates. 
At the outer boundary, fixed inflow boundary conditions 

are applied at the dayside, while free flow boundary condi-
tions are used at the nightside. At the inner boundary, the 
density and pressure are set to fixed values, the radial com-
ponent of velocity is set to zero, and the tangential compo-
nent of velocity is determined by the coupling between the 
magnetospheric inner boundary and the ionosphere to be 
discussed below. The normal component of time-dependent 
derived part of magnetic field B1 is determined by Dirichlet 
condition and its tangential components are determined by 
Neumann condition (Song et al., 1999).  

The sunward side of the inflow plane at E15.0 Rx    

is initialized by solar wind parameters. For the earthward 
side, the magnetic field is initialized by the superposition of 
dipole magnetic field and mirror dipole magnetic field to 
create 0xB   surface at the inflow plane referring to 

Raeder (2003) and the initial conditions for the density and 
plasma pressure are in accordance with Ogino (1986). 

The parameters of the steady solar wind used for the 
model input are described as  
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where x is directed from the Earth to the Sun and z is di-
rected from the center of the Earth to its Northern Hemi-
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sphere. 
The coupling between the magnetosphere and the iono-

sphere was established by mapping field-aligned currents 
from the magnetosphere to the ionosphere (Raeder et al., 
1998). The ionosphere is treated as a two-dimensional 
spherical shell at 1.017 RE. Thus a potential equation for the 
ionosphere is then solved according to Raeder (2003): 

 / / siniΦ j I   Σ , (6) 

where  is the ionospheric potential, and I denotes the di-
pole magnetic field inclination angle at the ionosphere. And 
Σ denotes the tensor of the ionospheric conductances writ-
ten as 
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where P  and H  are the Pedersen conductance and 

the Hall conductance respectively. In the present study, we 
set the Pedersen conductance to be 5 S and uniform at the 
northern and southern ionospheres, and for simplicity, we 
neglect the Hall conductance. 

We assume the magnetic field is dipole and equipotential 
in the region between the inner boundary and the iono-
sphere. In order to obtain the field-aligned currents at the 
ionosphere, the perpendicular currents are neglected (Mer-
kin and Lyon, 2010). From current continuity it follows that 

/ / constj B   along the magnetic field lines between the 

magnetospheric inner boundary and the ionosphere. Conse-
quently, the field-aligned currents at the ionosphere for eq. 
(6) can be written as / / / /i mj j , where / / ij  and / / mj  

are the field-aligned currents at the ionosphere and the 
magnetospheric inner boundary,  is the ratio of the mag-
netic field strength at the ionosphere and the magnetospher-
ic inner boundary. Thus, the field-aligned currents are 
mapped from the magnetospheric inner boundary to the 
ionosphere. 

In the present model, we take the assumption that the 
ionospheric potential is a constant at or near the low-latitude 
boundary of the computational domain. The computational 
domain of eq. (6) is    0 31.2 0 180        . With 

the conductances and the mapped the field-aligned currents 
at the ionosphere, we solve eq. (6) by using the chasing 
method. Then, according to Gombosi et al. (1998), the po-
tential at the ionosphere is mapped along the magnetic field 
lines to the magnetospheric inner boundary. And the poten-
tial at the inner boundary is used to get the flow velocity by 

taking ( )t t    2u B B  as the boundary conditions, 

here the subscript “t” refers to the tangential components of 

the velocity at the inner boundary. Thus the ionosphere 
plays a significant role in controlling the magnetospheric 
convection. 

1.2  Numerical implementation 

The AMR-CESE-MHD code (Feng et al., 2010, 2011) is 
employed in the present paper to numerically solve the 
model eq. (1). In this method, the governing MHD eq. (1) is 
transformed from the physical space , ,( )x y z  to the refer-

ence space ( , , )    while retaining the conservation form. 

The CESE solver is used to solve the transformed equations 
in the reference space with simple rectangular-uniform 
mesh, where a parallel AMR package, PARAMESH (Mac-
Neice et al., 2000), can be easily implemented. Because of 
the versatility of the general curvilinear coordinates, the 
method can be applied on any form of computational grid so 
long as it is locally Cartesian and its nonsingular transfor-
mation (mapping from physical space to reference space) is 
given. For details, refer to Feng et al. (2007, 2010, 2012b, 
2013, 2014) and the references therein. In what follows for 
self-consistent description, we briefly report its realization 
on the six-component overlapping grids. 

In the six-component grid introduced by Feng et al. 
(2010) for the solar-wind study, the spherical-shell compu-
tational domain is decomposed into six identical compo-
nents with partial overlapping regions (Figure 1 of Feng et 
al. (2010)), and each component is identically defined by a 
low-latitude spherical domain  
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The parameter δ = 2∆θ is determined by the grid spacing 
and layers of guard cells required for the minimum overlap-
ping area of two grid sizes. In the six-component grid parti-
tions, the same metric can be used and the component grids 
can be transformed into each other by coordinate transfor-
mation such that the basic equations, numerical grid distri-
bution, and all numerical tasks are identical in each compo-
nent. Hence we do not have to distinguish them and we only 
need to describe the grid partition and the associated coor-
dinate transform. The grid points in both  and  directions 
are even spaced such that = . In the r direction, a new 
variable  is introduced as a reference coordinate, which is 
exponentially related with r by r = a. In this way, the grid 
spacing [r] in the r direction is always around r by 
choosing  =loga(1+), so that each grid cell is always 
approximately a cube. As pointed out by Feng et al. 
(2012a), the reference coordinates (, , ) used in our 
CESE solver refer to (, , ) here, and with this setting, 
the grid cell in the reference space (, , ) is a rectangular 
box. In principle, any parameter a > 1 can be chosen and we 
take a = 1.481 as done by Feng et al. (2012a). 
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Figure 1  The grid distribution in the meridian plane and the equatorial 
plane, where the black quadrilaterals denote the grid cells cut through the 
x-z plane and the x-y plane. Color contours of current density Jy are plotted 
to delineate magnetospheric boundaries, such as the magnetopause and the 
bow shock. A white sphere of radius 3.0 RE plotted near the planet repre-
sents the inner boundary of the model. Note that high resolution grids are 
placed in the bow shock, the magnetopause, and the magnetotail. 

Initially, the computational domain in every reference 
component is divided into 10 × 4 × 4 blocks with each 
block consisting of 8 × 8 × 8 cells. These correspond to 
N= N = 33, where N and N are the mesh numbers of the 
latitude and longitude, respectively. Thus, = (max− 
min)/(N−1) = /64, = (max−min)/(N−1) = /64. The 
gird points on each component in physical space is defined 
as j = min + j, j = 0,1, , N−1, and k = min+k, k= 
0, 1,  , N−1, where min = /4, max = 3/4, min = 3/4, 
and max = 5/4. The inner boundary is set at r = 3.0 RE and 
the outer boundary is set at r = 156.0 RE such that each 
component of the physical grids is equivalent to 2.797 < < 
12.86, /4−  3/4+, and 3/4−  5/4+ in 
the computational domain or the reference space. 

There exists a nonsingular curvilinear coordinate trans-
form (Feng et al., 2012a) between the reference coordinates 
(, , ) and the physical coordinates (x, y, z) such that the 
model equation (1) can be expressed in the reference coor-
dinates (, , ) as  

  
T

νt

ˆ ˆ ˆ ˆ ,
        

 U
F F S  (9) 

where the corresponding transformation of coordinates be-
tween any two components or transformation of solution 

variables between ν( )  
ˆ ˆˆ   U, F, F  in the reference space and 

ν(   ) U, F, F in the physical space on an arbitrary component 

have been provided by Feng et al. (2010, 2013, 2014). Note 
that eq. (9) in the reference coordinate space (, , ) can 

be solved directly by the CESE solver (Feng et al., 2007, 
2010) with rectangular box cells in a logically Cartesian 
space. 

With these in mind, we can easily take turns between the 
physical-solution variables and the reference-solution varia-
bles. That is, if the initial inputs of the physical solution 

variables are given, we first use ν
 F,  F  to calculate the 

fluxes ν

ˆ ˆ F,  F  and apply the CESE solver to eq. (9) to ob-

tain the reference-solution variables Û  and their first-order 

derivatives ( , , )ˆ ˆ ˆU U U    at the new time step. Finally, we 

can recover the physical solution variables ( , , , )U U U Ux y z . 

2  Simulation results 

We have solved the MHD Equations by using the 
AMR-CESE-MHD method on a six-component grid sys-
tem. The model is driven by steady solar wind with due 

northward IMF. When  
1
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|| U ||
 is satisfied 

during the code running, the numerical results can be be-
lieved to arrive at a quasi-steady state and we get the corre-
sponding quasi-steady state of the magnetospheric configu-
rations.  

The computational domain extends from 3.0 to 156.0 RE. 
The magnetic field is so strong near the Earth’s surface that 
the Alfvén velocity becomes very high. In order to keep the 
computation time step from becoming too small, we set the 
inner boundary at 3.0 RE. Figure 1 shows the grid distribu-
tion in the meridian plane and the equatorial plane, where 
the black quadrilaterals denote the grid cells cut through the 
x-z plane and the x-y plane. Color contours of current den-
sity Jy are plotted to delineate magnetospheric boundaries, 
such as the magnetopause and the bow shock. The grid size 
varies from 0.15 RE near the inner boundary to be 3.8 RE 
downstream far from the Earth. 

Figure 2 shows the color contours of density, velocity, 
thermal pressure, and logarithmic magnetic strength for due 
northward IMF case. The locations and shapes of the bow 
shock and the magnetopause can be clearly seen from this 
figure, respectively. 

When the solar wind meets the Earth’s magnetosphere, 
bow shock forms before the planet’s magnetopause. At the 
same time, the solar wind is heated and decelerated while 
coming across the bow shock, and then it is deflected to 
flow away around the magnetopause. It is worthy to note 
that two funnel-shaped regions with high speed flow located 
at the nightside of cusp region, where the magnetic field is 
very weak. They are related to the cusp reconnection during 
the northward IMF conditions. The distribution of Vx in the 
x-z plane shows weak sunward flows (0 < Vx < 50 km s−1) in 
the magnetosphere driven by reconnection or the global  
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Figure 2  Color contours of density (a), velocity (b), pressure (c), and the logarithmic magnetic strength (d) for due northward IMF case. 

convection electric field. We extract RBS (the subsolar bow 
shock standoff distance) by locating the bow shock at the 
midpoint of the MHD jump in velocity along the x-axis and 
the RBS are 15.5 RE for due northward IMF. 

Figure 3 clearly shows the color contours of the current 
density and thermal pressure under due northward IMF in 
the cross section at x = −15.0 RE in the tail. A -shaped 
configuration turns up in the cross sections. The current 
density in the bow shock with ~10−4 µA m−2 (outer tur-
quoise-color circle) is much lower than the magnetopause 
current density with ~4×10−4 µA m−2. Plots of the current 
density clearly show that the magnetopause currents and the 
cross-tail currents form a closed system. The cross-tail cur-
rent sheet is horizontal because our present tests have been 
run with no dipole tilt. Moreover, we find that the -shaped 
configuration under due northward IMF is flat.  

We present the distribution of the y-direction current 
density Jy on the noon-midnight meridian plane in Figure 4 
in which the red lines with arrowheads are the magnetic 
field lines. From Figure 4, we can see that the magneto-
sphere is closed under due northward IMF. The tail of the 
closed magnetosphere extends to nearly 50.0 RE (denoted 

by a gray dot). Our results show that the reconnection be-
tween the IMF and the magnetospheric field takes place on 
the nightside of the two cusp regions for northward IMF. 
This was first proposed by Dungey (1961). And the cusp 
reconnection has been shown in these simulation models 
summarized by the introduction of this paper. We find that 
the location of the dayside magnetopause defined by the last 
closed magnetic field line is located at 11.2 RE (denoted by 
a blue dot) in the subsolar region, 14.8 RE (denoted by a 
white dot) at the noon-midnight terminators. Our results are 
well consistent with the empirical magnetopause location 
according to Shue et al. (1998). 

At the bow shock, currents are generated. The solar wind 
flow is decelerated by the Lorentz force owing to these cur-
rents. The dayside magnetopause current is present near the 
region of the first closed magnetic field line (dayside mag-
netopause). The y-direction current density peaks away 
from the equator and extends to higher latitude along the 
field lines (Meng et al., 2012). However, the nightside 
magnetopause current and the topology of the magneto-
pause become completely different on the nightside (Song 
et al., 1999), so we cannot directly determine the nightside  
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Figure 3  Plots of the current density J (a) and thermal pressure (b) color contours for due northward IMF in the cross sections at x = −15.0 RE in the tail. 

 

 

Figure 4  Color contours of the current Jy plotted under the traces of 
magnetic field lines for due northward IMF. 

magnetopause by locations of the nightside magnetopause 
current. 

Figure 5 shows the distributions of ionospheric field- 
aligned currents and electric potential in the ionospheric 
northern hemisphere for northward IMF in an MLT-  
magnetic latitude coordinate system. Figure 5(a) shows that 
three pairs of field-aligned currents turn up in the iono-
sphere under due northward IMF. The closest to the mag-
netic pole is the pair of the Northward Bz (NBZ) currents. 
Following the NBZs currents, region-1 and region-2 cur-
rents are distributed equatorward in the ionosphere (Song et 
al. (1999)). Yet region-2 currents are so weak that we can 
hardly make out them. The four-cell structure of electric 
potential is shown in Figure 5(b). It is interesting that the 
two dayside cells look like bananas while the two nightside 
cells look like mangos.  

 
 

 

Figure 5  The distributions of ionospheric field-aligned currents J// (a) and electric potential  (b) in the Northern Hemisphere for due northward IMF, in an 
MLT-magnetic latitude coordinate system. The outermost solid circle shows the 58.8° latitude, and the dashed concentric circles correspond to 70° latitude 
and 80° latitude. The blue/green colors in (a) represent the outflow currents and yellow/red colors represent the inflow currents. 
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Typically structures such as the bow shock, the magne-
tosphere and the current sheet are all well reproduced by our 
simulations. Our results are comparable to those published 
by other researchers (Song et al., 1999; Guzdar et al., 2001; 
Kabin et al., 2004; Lavraud and Borovsky, 2008; Ridley et 
al., 2010; Zhang et al., 2011; Meng et al., 2012). 

3  Discussions and conclusions 

We have used the AMR-CESE-MHD method on a six- 
component grid system to simulate the Earth’s magneto-
sphere under steady solar wind with due northward IMF for 
model validation. The code was running on a highly parallel 
computer with 96 processes. 

We have used two levels grid refinement by using the 
AMR technique and the discontinuity in the computational 
domain such as the bow shock, the magnetopause are all 
captured very well. Our test results are highly consistent 
with the simulation results provided by the Community Co-
ordinated Modeling Center (CCMC) at Goddard Space 
Flight Center through their public Runs on Request system 
(http://ccmc.gsfc.nasa.gov).  

As a milestone physics-based model of space weather 
study, the CESE-MHD model developed by Feng and his 
colleagues (Hu et al., 2008; Yang et al., 2011; Jiang and 
Feng, 2012, 2013; Zhou et al., 2012, 2013, 2014; Feng et 
al., 2014) has the following merits. (1) The combination of 
the projected normal characteristic method and the mass 
flux limit enables the model to reproduce reasonable distri-
butions of the plasma density, temperature and velocity on 
the solar surface and incorporation of the time-dependent 
magnetograms into the model is preliminarily established 
(Feng et al., 2012c; Yang et al., 2012), with emphasis fo-
cused on how to preprocess the observational data, how to 
solve projected normal characteristics equations, and how to 
update the bottom boundary by using the time-dependent 
magnetic field from either observations or the surface flux 
transport model. (2) The CESE MHD model provides a uni-
fied treatment of flow evolution in space and time and keeps 
the local and global space-time flux conservation in a co-
herent and efficient manner. The fluxes at the interface of 
any pair of conservation elements (CEs) can be efficiently 
evaluated by means of non-staggered space-time grids 
without using Riemann solvers or other flux models, which 
significantly reduces the CPU time. (3) The treatment of 
time iteration by integrating two half timesteps into one full 
timestep (Jiang et al., 2010; Feng et al., 2012a) leads to 
low-storage and makes the scheme suitable for building 
blocks for adaptive mesh refinement calculations. (4) The 
introduction of six-component grid (Feng et al., 2010, 2014) 
for the computational domain enables us to fit the spherical 
surface boundary with an easy implementation of the inner 
boundary conditions, and meanwhile to avoid both coordi-
nate singularities and polar grid convergence. Particularly, it 

will be easy to recognize the observation at the lower 
boundary. This property of course applies to the spherical 
computational domain of magnetospheric study. (5) It 
should be noted that the same CESE solver can apply to any 
coordinate system (such as Cartesian, spherical, cylindrical 
coordinates and any other curvilinear coordinates) with only 
the difference of the coordinate transformation, and conse-
quently the solver is highly independent of the grid system. 

All these above advantages of CESE-MHD model can be 
explored in the future to improve the present model in this 
paper for magnetospheric study in the following aspects, 
such as numerical accuracy, stability, grid resolution and 
time-dependent solar wind input. Especially, the time-  
varying results (at the Earth) obtained by the CESE-MHD 
model for a coronal mass ejection from the Sun to the Earth 
can be used as input to our MHD model here for studying 
the influence of adverse space weather on the Earth’s mag-
netosphere and ionosphere in more realistic way. 

On the other hand, the closer loop of the Pederson cur-
rent has not been well-known. The CESE-MHD model is 
helpful to building the ionospheric current system during 
the northward IMF conditions (Du et al., 2008, 2011a, b; Xu 
et al., 2008). 
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