
The Astrophysical Journal, 755:62 (13pp), 2012 August 10 doi:10.1088/0004-637X/755/1/62
C© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA

Chaowei Jiang, Xueshang Feng, and Changqing Xiang
SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy

of Sciences, Beijing 100190, China; cwjiang@spaceweather.ac.cn
Received 2012 April 12; accepted 2012 June 6; published 2012 July 26

ABSTRACT

Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of
the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms
using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the
currently available NLFFF codes have been developed with computational volume such as a Cartesian box
or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance
global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can
provide a full-disk magnetogram with resolution up to 4096 × 4096. In this work, we present a new parallelized
code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the
magnetohydrodynamics relaxation approach, the CESE–MHD numerical scheme, and a Yin–Yang spherical grid
that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere
force-free solutions from Low & Lou’s semi-analytic force-free field model. The code shows high accuracy and
fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement
technique.
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1. INTRODUCTION

The magnetic field holds a central position within solar
research such as sunspots and coronal loops, prominences,
solar flares, solar wind, and coronal mass ejections (CMEs).
However, a routinely direct measurement of the solar magnetic
field on which we can rely is restricted to the solar surface,
i.e., the photosphere, in spite of the works that have been done
to measure the coronal fields using the radio and infrared wave
bands (Gary & Hurford 1994; Lin et al. 2004). This is extremely
unfortunate since the magnetic field plays a comparatively minor
role in the photosphere but completely dominates proceedings
in the corona (Solanki et al. 2006). Up to the present, our
knowledge of the three-dimensional (3D) coronal magnetic field
has been largely based on extrapolations from photospheric
magnetograms using physical models. For the low corona,
one model assuming that the corona is free of Lorentz force
(J × B = 0, where J is the current and B is the magnetic
field) is justified by a rather small plasma β (the ratio of
gas pressure to magnetic pressure) and a quasi-static state.
The force-free assumption involves an intrinsically nonlinear
equation (∇ × B) × B = 0 that is rather difficult to solve if
based on boundary information alone, and various computing
codes have been proposed to solve this equation numerically
for nonlinear force-free field (NLFFF) extrapolations (e.g., see
review papers by Amari et al. 1997; McClymont et al. 1997;
Schrijver et al. 2006; Metcalf et al. 2008; Wiegelmann 2008;
DeRosa et al. 2009).

Most of the currently available NLFFF codes are developed
in Cartesian coordinates. Thus, the extrapolations are limited to
relatively local and small areas, e.g., a single active region (AR)
without any relationship to other ARs. However, ARs usually
cannot be isolated since they interact with the neighboring ARs
or overlying large-scale fields. Observations of moving plasma
connecting several separated ARs by the Solar and Heliospheric

Observatory (SOHO) Extreme Ultraviolet Imaging Telescope
reveal the connections between ARs (e.g., Wang et al. 2001).
Also, the activities in the chromosphere and corona often spread
over several ARs, such as filament bursts recorded in Hα images
and CMEs observed by SOHO Large Angle and Spectrometric
Coronagraphs. Even for a single AR, the fields of view in
a Cartesian box are often too small to properly characterize
the entire relevant current system (DeRosa et al. 2009). To
study the connectivity between multi-ARs and extrapolate in
a larger field of view, it is necessary to take into account the
curvature of the Sun’s surface by extrapolation in spherical
geometry partly or even entirely, i.e., including the global corona
(Wiegelmann 2007; Tadesse et al. 2011, 2012). Moreover, a
global NLFFF extrapolation can avoid any lateral artificial
boundaries that cause issues in Cartesian codes. Global non-
potential extrapolations are urgently needed considering that
high-resolution, full-disk vector magnetograms will be soon
available from the Solar Dynamics Observatory (SDO). Another
motivation comes from the developing of global MHD models
for the solar corona and solar wind. Up to the present, the
global MHD models have been based only on the line-of-sight
(LoS) magnetogram, using the global potential extrapolation to
initialize the computation (e.g., Feng et al. 2010). These models
will be challenged by the full-sphere vector magnetogram,
which needs a global non-potential extrapolation.

Over the past few years, several global NLFFF extrapolation
methods have been developed, but they are still in their infancy
and many issues need to be resolved. For example, He & Wang
(2006) validated the boundary-integral-equation method (Yan &
Li 2006) for extrapolation above a full sphere using simple mod-
els of Low & Lou (1990), while application to more complex
extrapolations needs further development. Wiegelmann (2007)
and Tadesse et al. (2009) extended their optimization code to
spherical coordinates including those for both partial and full
spheres, but the convergence speed is proved to be rather slow
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Figure 1. Yin–Yang grids: the component grids (a) Yin and (b) Yang, and (c) the overlapping grid.

(A color version of this figure is available in the online journal.)

if polar regions are included in the computation (Wiegelmann
2007). A flux rope insertion method based on magnetofriction
was also developed by van Ballegooijen (2004) for construct-
ing NLFFFs in spherical coordinates (e.g., see its applications
by Bobra et al. 2008; Su et al. 2009a, 2009b; Savcheva & van
Ballegooijen 2009), but the same problem as in Wiegelmann
(2007) may be encountered if the code is extended to contain
the whole sphere. Very recently, Contopoulos et al. (2011) pre-
sented a new force-free electrodynamics method for the global
coronal field extrapolation; however, the solution is not unique
since it is only prescribed by the radial magnetogram.

Among the existing problems, choosing a suitable grid sys-
tem is in particular critical for the implementation of any global
models (not only the global force-free extrapolation) with the
lower boundary as the full solar surface. Naturally, one can use
the spherical grid, i.e., with grid lines defined by coordinates
(r, θ, φ). However, the simplicity of a standard-spherical coor-
dinate grid is destroyed by the problem of grid convergence
and grid singularity at both poles (Usmanov 1996; Kageyama
& Sato 2004; Feng et al. 2010). These problems severely re-
strict the converge speed of the full-sphere optimization code as
reported by Wiegelmann (2007). Although the singularity prob-
lem can be partially resolved by excluding a small high-latitude
cone, e.g., restricting the latitude within 10◦ � θ � 170◦, it
inescapably disconnects the field lines crossing over the polar
region. To avoid these problems, Contopoulos et al. (2011) sim-
ply use the Cartesian grid to implement their method by taking
a cubic Cartesian box to contain the whole region with the solar
sphere cut out. However, the Cartesian grid cannot character-
ize precisely the Sun’s sphere surface, since the solar sphere
nowhere coincides with any grid points. Thus, the correspond-
ing boundary conditions are hard to prescribe. On the other
hand, the unstructured grid has been used frequently in global
MHD models (Tanaka 1994; Feng et al. 2007; Nakamizo et al.
2009) and can possibly be introduced into NLFFF extrapola-
tion, but it has high costs in mesh generation and management
and is not suitable for solvers based on numerical difference
(though it may be suitable for a finite element solver, e.g.,
the FEMQ code developed by Amari et al. 2006). Moreover,
on the unstructured grid, it is difficult to implement the tech-
nique of parallelized-adaptive mesh refinement (AMR), which
is an attractive tool for resolving the contradiction between the
computational demand for extrapolating high-resolution/large
field-of-view magnetograms and the computational resource

limitations. A promising solution to the above problems is
the use of an overlapping spherical grid, e.g., the several types
of overlapping spherical grids proposed by Usmanov (1996),
Kageyama & Sato (2004), Henshaw & Schwendeman (2008),
and Feng et al. (2010). In principle, one can use a set of low-
latitude partial-sphere grids to cover the full sphere with some
patches overlapped. Certainly, in such an overlapping grid sys-
tem, there are no pole problems; meanwhile, the grid manage-
ment is easy. If the component grids are carefully chosen, the
overlapping patches can be minimized and only add a very
small numerical overhead to the computation for data commu-
nications between the component grids. Among the overlap-
ping grids for composing the full sphere, a so-called Yin–Yang
grid (Kageyama & Sato 2004) is a most elegant configuration
with only two identical components and an overlapping region
smaller than 7% of the full sphere (see Figure 1).

Our previous work (Jiang et al. 2011; Jiang & Feng 2012a)
was devoted to a new implementation of the MHD relaxation ap-
proach for NLFFF extrapolation based on the CESE numerical
scheme (spacetime conservation-element and solution-element
scheme). We have introduced a new set of magneto-frictional-
like equations with the AMR and a multigrid-like strategy for
accelerating the computation and improving its convergence.
The good performance and high accuracy of the code has been
demonstrated through detailed comparisons with previous work
by Schrijver et al. (2006) and Metcalf et al. (2008) based on
several NLFFF benchmark tests, although it remains to be seen
how well this method will work with real solar data. The suc-
cess of the CESE–MHD–NLFFF code encourages us to extend
it to spherical geometry and ultimately realize a fast and ac-
curate way for the global non-potential extrapolation of the
high-resolution full-disk magnetograms from SDO. In this pa-
per, we take the first step by developing a new code for global
NLFFF extrapolation using the CESE–MHD–NLFFF method
on the Yin–Yang grid. This code is assumed to be applied to
force-free vector magnetograms, i.e., with the uncertainties and
inconsistencies removed by some kind of preprocessing ap-
proach, e.g., that proposed by Wiegelmann et al. (2006). This is
important considering that NLFFF codes generally have failed
to extrapolate a satisfactory force-free field when applied to
the non-force-free magnetogram (Metcalf et al. 2008), which is
usually the case with observed data.

The remainder of the paper is organized as follows: In
Section 2, we give the model equations and the numerical
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method including a curvilinear-version CESE–MHD scheme
and its implementation in the Yin–Yang grid. In Section 3, we
set up two semi-analytic test cases of the full-sphere NLFFF
solution proposed by Low & Lou (1990). The extrapolation re-
sults and qualitative and quantitative comparisons are presented
in Section 4. Finally, we draw conclusions and give some out-
looks for future work in Section 5.

2. THE METHOD

2.1. Model Equations

The basic idea of using the MHD relaxation approach to solve
the force-free field is to use some kind of fictitious dissipation
to drive the MHD system to an equilibrium in which all the
forces can be neglected if compared to the Lorentz force and
the boundary vector map is satisfied. In our previous work for
NLFFF extrapolation (Jiang & Feng 2012a), a magnetic splitting
form of magneto-frictional model equations was introduced as

∂ρv
∂t

= (∇ × B1) × B − νρv,

∂B1

∂t
= ∇ × (v × B) + ∇(μ∇ · B1) − v∇ · B1,

∂B0

∂t
= 0,∇ × B0 = 0,∇ · B0 = 0,

ρ = |B|2 + ρ0, B = B0 + B1. (1)

In the above equation system, B0 is a potential field matching
the normal component of the magnetogram, B1 is the deviation
between the potential field B0 and the force-free field B to
be solved, ν is the frictional coefficient, and μ is a numerical
diffusive speed of the magnetic monopole; ρ0 is a necessary
small value (e.g., ρ0 = 0.01) to deal with the very weak field
associated with the magnetic null. The values for parameters
ν and μ are, respectively, given by ν = Δt/Δx2 and μ =
0.4Δx2/Δt , according to the time step Δt and local grid size Δx.
The merits of using the above equations include the following:

1. Retaining explicitly the time-dependent form of the mo-
mentum equation1 makes the magneto-frictional equation
system able to be handled by the modern computational
fluid dynamics or MHD solver designed for the standard
partial-differential-equation system like

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)

∂y
+

∂H(U)

∂z
= S. (2)

2. Numerically, accuracy can be gained only for solving
the deviation field B1 by dividing the total magnetic
field B into two parts (B = B0 + B1) (Tanaka 1994).
Also, such a splitting has a physical meaning (Priest
& Forbes 2002): Potential component B0 arises from
photospheric or sub-photospheric currents and can be
regarded as invariant during a flare, whereas the non-
potential component B1 arises from large-scale coronal
currents (above the photosphere) and is the source of the
flare energy.

1 This is unlike the standard magneto-frictional method in which the
momentum equation is simplified as νv = J × B. Although the standard
magneto-frictional method is simpler since only the induction equation
∂B/∂t = ∇ × (v × B) = ∇ × ((J × B/ν) × B) is needed to be solved, this
equation cannot be written in the form of Equation (2).

3. Any numerical magnetic monopoles ∇ · B1 can be rapidly
convected away with the plasma by term −v∇ · B1 and
effectively diffused out by term ∇(μ∇ · B1).

4. Setting a pseudo-plasma density ρ ∝ |B|2 can equalize the
Alfvén speed of the whole domain and thus accelerate the
relaxation in the weak field regions.

2.2. Numerical Implementation

To solve the model Equation (1) in spherical geometry, we em-
ploy a curvilinear version of the CESE–MHD solver proposed
by Jiang et al. (2010). In this method, the governing equations
written as Equation (2) are transformed from the physical space
(x, y, z) into a reference space (ξ, η, ζ ) whose mapping is ex-
plicitly known as x = x(ξ, η, ζ ); y = y(ξ, η, ζ ); z = z(ξ, η, ζ ).
The transformed equations are

∂Û
∂t

+
∂F̂
∂ξ

+
∂Ĝ
∂η

+
∂Ĥ
∂ζ

= Ŝ, (3)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Û = JU,

F̂ = J (Fξx + Gξy + Hξz),
Ĝ = J (Fηx + Gηy + Hηz),
Ĥ = J (Fζx + Gζy + Hζz),
Ŝ = JS,

(4)

and J is the determinant of Jacobian matrix J for the mapping,
i.e.,

J = ∂(x, y, z)

∂(ξ, η, ζ )
=

(
xξ xη xζ

yξ yη yζ

zξ zη zζ

)
. (5)

Based on this transformation, the basic idea is to map the
spherical geometry of physical space to a simple rectangular
grid of the reference space, in which we can use the Cartesian
CESE–MHD method to solve the transformed equations with
very simple rectangular-uniform mesh. For detailed descriptions
of the CESE–MHD method and its curvilinear version, please
refer to Jiang et al. (2010) and Feng et al. (2012).

To overcome the grid-singularity problem at both poles of
the standard spherical coordinates, we use the Yin–Yang grid.
As a type of overlapping grid, the Yin–Yang grid is synthesized
by two identical component grids in a complementary way to
cover an entire spherical surface with partial overlap on their
boundaries (see Figure 1). Each component grid is a low latitude
part of the latitude–longitude grid without the pole. Therefore,
the grid spacing on the sphere surface is quasi-uniform and the
metric tensors (i.e., the matrix elements in Equation (5)) are
simple and analytically known (Kageyama & Sato 2004). In
Figure 1, one component grid, say the “Yin” grid, is defined in
the spherical coordinates by

|θ − π/2| � π/4 + δ; |φ − π | � 3π/4 + δ, (6)

where δ = 1.5Δθ is a small buffer to minimize the required
overlap. The other component grid, the “Yang” grid, is defined
by the same rule of Equation (6) but in another coordinate system
that is rotated from the Yin’s. The relation between Yin and Yang
coordinates is denoted in Cartesian coordinates of each one by
(xe, ye, ze) = (−xn, zn, yn), where (xn, yn, zn) is Yin’s Cartesian
coordinates and (xe, ye, ze) is Yang’s.

3



The Astrophysical Journal, 755:62 (13pp), 2012 August 10 Jiang, Feng, & Xiang

We then map the Yin and Yang component grids to rectangular
grids by defining two mapping equations

Yin

⎧⎨
⎩

x = eξ sin θ cos φ

y = eξ sin θ sin φ

z = eξ cos θ

(7)

and

Yang

⎧⎨
⎩

x = −eξ sin θ cos φ

y = eξ cos θ

z = eξ sin θ sin φ,

(8)

where (ξ, θ, φ) are the coordinates of the reference space with
the rectangular-uniform mesh used (Δξ = Δθ = Δφ). In this
definition, we have

Δr = eξ+Δξ − eξ = eξ (eΔξ − 1) ≈ rΔξ = rΔθ, (9)

which means that the cells are close to regular cubes in physical
space, especially at low latitudes.

The grid extent in ξ is ξ ∈ [0, ln 10], i.e., the outer boundary is
set at r = 10RS (solar radius). The initial condition is specified
by simply setting B1 = 0 and v = 0. The constant part B0 is
obtained by a fast potential field solver which is developed by
a combination of the spectral and the finite-difference methods
(Jiang & Feng 2012b). The lower boundary condition is given by
the vector magnetogram, while the outer boundary is fixed with
zero values of B1 and v. In the following test cases, we focus
on the field extrapolation in r ∈ [1, 2]RS , and the objective of
setting the outer boundary far beyond the extrapolation volume
is to minimize the boundary effect.

On the boundaries where grids overlap, solution values on
one component grid are determined by interpolation from the
other. We use explicit interpolation for simplicity and efficiency
in parallel computation, and the grid buffer δ is suitably cho-
sen for enough overlap area to perform such interpolation (see
Figure 1). In the reference space, standard tensor-product La-
grange interpolation (Isaacson & Keller 1966) is used. For in-
stance (see Figure 2 for details), the interpolation of value f at
the point M(ξM, ηM, ζM ) in the reference space is computed
by f (M) = ∑2

k=0

∑2
j=0

∑2
i=0 f (i, j, k)P M

i (ξ )P M
j (η)P M

k (ζ ),
where P M

j (x) is the Lagrange interpolating polynomial

P M
j (x) = ∏2

k=0,k �=j (xM − xk/xj − xk) with x being ξ, η or ζ .
Note that the interpolation accuracy is of three orders, which is
higher than the CESE solver by one order. Thus, the discretiza-
tion accuracy in the overlapping region will not be reduced
by the interpolation. Finally, to realize the parallelization on
these bi-component grids, each component grid is divided into
small blocks consisting of 8 × 8 × 8 cells with guard cells
(one layer of ghost cells for convenience of communication
between blocks), which are distributed evenly among the pro-
cessors. The message-passing-interface library is employed for
data communications between the processors. The interpolation
of the overlapping boundaries is dealt with in a similar way
to that for the intra-grid guard-cell filling, and both operations
are arranged to be done simultaneously. The load balancing is
also considered carefully among all the processors to further
improve the parallel scaling.

3. TEST CASE

The NLFFF model derived by Low & Lou (1990) has
served as a standard benchmark for many extrapolation codes

Figure 2. Interpolation of point M in the reference space: If M represents a
mesh point on the overlapping boundary, for example, of the Yin grid, then the
twenty-seven (33) nodes denote Yang’s inner mesh points that are closest to M.

(Wheatland et al. 2000; Amari et al. 2006; Schrijver et al. 2006;
Valori et al. 2007; He & Wang 2008; Jiang et al. 2011). The
fields of this model are basically axially symmetric and can be
represented by a second-order ordinary differential equation of
P (μ) derived in spherical coordinates

(1 − μ2)
d2P

dμ2
+ n(n + 1)P + a2 1 + n

n
P 1+2/n = 0, (10)

where n and a are constants and μ = cos θ . With boundary
conditions of P = 0 at μ = −1, 1, the solution P of
Equation (10) is uniquely determined by two eigenvalues, n
and its number of nodes m (Low & Lou 1990; Amari et al.
2006). The magnetic fields are then given by

Br = 1

r2 sin θ

∂A

∂θ
, Bθ = − 1

r sin θ

∂A

∂r
, Bφ = 1

r sin θ
Q, (11)

where A = P (μ)/rn and Q = aA1+1/n. The fields are
axisymmetric in spherical coordinates (i.e., invariant in the φ
direction) with a point source at the origin. To avoid such
obvious symmetry in the full-3D extrapolation test, we locate the
point source with 0.3RS offset to the center of the computational
volume and deviate the axis of symmetry with the z-axis by
Φ = π/10 (the length unit of the above equations is the
solar radius RS). We present two test cases with eigenvalues
of n = 1,m = 1 (hereafter referred to as CASE LL1) and
n = 3,m = 1 (CASE LL2), respectively. Both cases are
performed with the same resolution of 90 × 180 grids in the
θ–φ plane and r ∈ [1, 2]RS . The synoptic maps of the field and
the force-free parameter α at the bottom of the solutions are
shown in Figures 3 and 4, and the 3D field lines are shown in
panels (a) of Figures 5 and 6. It should be remarked that these
magnetograms do not represent the real magnetic distributions
of the photosphere but only are to be used for the purpose of
testing our code. As can be seen, the α distribution of CASE LL2
is more inhomogeneous than that of CASE LL1, which means
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Figure 3. Vector map (upper) and α distribution (bottom) of CASE LL1. In the vector map the contours represent Br , and the tangential field (Bφ, Bθ ) is shown by
the vectors with blue color in the positive Br region and with red color in the negative Br region.

(A color version of this figure is available in the online journal.)

that CASE LL2 is more nonlinear. We note that CASE LL1
is very similar to test cases used by Wiegelmann (2007) and
Tadesse et al. (2009), while CASE LL2 is more difficult than
tests in their works.

Before inputting the vector maps in the NLFFF code, we made
some consistency checks for the maps. If a vector map is used
for a force-free extrapolation, some necessary conditions have
to be fulfilled (Aly 1989; Sakurai 1989; Tadesse et al. 2009).
For clarification we repeat here these conditions from Tadesse
(2011) where a detailed derivation of the condition formula is
given. First, the net magnetic flux must be in balance, i.e.,∫

S

Br ds = 0, (12)

where S represents the whole sphere. Second, the total force on
the boundary has to vanish, which can be expressed in spherical

coordinates as

F1 =
∫

S

[
1

2
(B2

θ + B2
φ − B2

r ) sin θ cos φ

− BrBθ cos θ cos φ + BrBφ sin φ

]
ds = 0;

F2 =
∫

S

[
1

2
(B2

θ + B2
φ − B2

r ) sin θ sin φ

− BrBθ cos θ sin φ − BrBφ cos φ

]
ds = 0;

F3 =
∫

S

[
1

2
(B2

θ + B2
φ − B2

r ) cos θ + BrBθ sin θ

]
ds = 0.

(13)
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Figure 4. Same as Figure 3 but for CASE LL2.

(A color version of this figure is available in the online journal.)

Third, the total torque on the boundary vanishes, i.e.,

T1 =
∫

S

Br (Bφ cos θ cos φ + Bθ sin φ) ds = 0;

T2 =
∫

S

Br (Bφ cos θ sin φ − Bθ cos φ) ds = 0;

T3 =
∫

S

BrBφ sin θ ds = 0. (14)

To quantify the quality of the synthetic full-disk magnetograms
with respect to the above criteria, we compute three parameters,
i.e., the flux balance parameter

εflux =
∫
S
Br ds∫

S
|Br | ds

, (15)

the force balance parameter

εforce = |F1| + |F2| + |F3|
EB

, (16)

and the torque balance parameter

εtorque = |T1| + |T2| + |T3|
EB

, (17)

where EB = ∫
S
(B2

r +B2
θ +B2

φ) ds. For the above cases, the three
parameters are (−7.117 × 10−4, 1.181 × 10−4, 6.313 × 10−6)
and (−1.028×10−3, 5.458×10−4, 7.379×10−5), respectively,
which shows that these maps are ideally consistent with the
force-free model.
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Figure 5. CASE LL1: 3D magnetic field lines with contour of Br on the photosphere surface—(a) Low & Lou’s solution; (b) the extrapolation result; and (c) the initial
potential field.

(A color version of this figure is available in the online journal.)
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Figure 6. Same as Figure 5 but for CASE LL2.

(A color version of this figure is available in the online journal.)

4. RESULTS

In this section, we present the results of extrapolation and
compare them with their original solutions qualitatively and
quantitatively. As usual, the quantitative comparison is per-
formed by computing a suite of metrics (also referred to as
figures of merit), which are listed as follows:

1. the vector correlation Cvec

Cvec ≡
∑

i

Bi · bi

/( ∑
i

|Bi |2
∑

i

|bi |2
)

; (18)

2. the Cauchy–Schwarz inequality CCS

CCS ≡ 1

M

∑
i

Bi · bi

|Bi ||bi | ; (19)

3. the normalized and mean vector error E′
n, E′

m

En ≡
∑

i

|bi − Bi |
/ ∑

i

|Bi |;E′
n = 1 − En, (20)

Em ≡ 1

M

∑
i

|Bi − bi |
|Bi | ;E′

m = 1 − Em; and (21)

4. the magnetic energy ratio ε

ε =
∑

i |bi |2∑
i |Bi |2 ; (22)

where Bi and bi denote the Low & Lou solution and the
extrapolated field, respectively, i denotes the indices of the grid
points, and M is the total number of grid points involved. It is
also important to measure the ratio of the total energy to the
potential energy

E/Epot =
∑

i |Bi |2∑
i |(Bpot)i |2 (23)

to study the free energy budget for a realistic coronal field.
We also calculate another four metrics to measure the force-

freeness and divergence-freeness of the results. They are the
current-weighted sine metric CWsin

CWsin ≡
∑

i |Ji |σi∑
i |Ji | ; σi = |Ji × Bi |

|Ji ||Bi | , (24)
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Figure 7. Contour map comparison of Low & Lou’s solution (solid lines) and extrapolation solution (dashed lines) at r = 1.5 RS for Br (top), Bθ (middle), and Bφ

(bottom). The left column is for CASE LL1 and the right one is for CASE LL2.

(A color version of this figure is available in the online journal.)

the divergence metric 〈|fi |〉

〈|fi |〉 = 1

M

∑
i

(∇ · B)i
6|Bi |/Δx

, (25)

and the E∇·B and E∇×B

E∇·B = 1

M

∑
i

|Bi(∇ · B)i |
|∇(|B|2/2)i | ;

E∇×B = 1

M

∑
i

|Ji × Bi |
|∇(|B|2/2)i | . (26)

All the above metrics have been described in detail in our
previous work (Jiang & Feng 2012a) and thus will not be
repeated here.

4.1. Qualitative Comparison

In Figures 5 and 6, we present side-by-side comparisons of
the extrapolation results with the Low & Lou models and the
potential fields by plotting the 3D field configurations. For each
case, the field lines are traced from the same set of foot points on

the photosphere. A good agreement between our extrapolation
results and the original Low & Lou solutions can be seen from
the high similarity of most of the field lines. The basic difference
between the extrapolated fields and the potential fields is
the shearing, which is reconstructed by the bottom-boundary-
driving process exerted on the initial unsheared potential fields.
By placing the outer boundary far enough away, we can make
most of the field lines move freely in the volume, which is helpful
for the relaxation of the field lines. Figure 7 compares the field
values of the r = 1.5 RS surface by plotting the contours of the
reference solutions (solid lines) and the extrapolation (dashed
lines) on the same figure. As can be seen, contour lines of the
fields from the reference solution and the extrapolation almost
overlap with each other.

4.2. Quantitative Comparison

Quantitative metrics shown in Tables 1 and 2 demonstrate
good performance of the code. In these tables, we present
results of the full sphere with r ∈ [1, 2]RS and the lower
region r ∈ [1, 1.5]RS . For both cases, results of the vector
correlation Cvec and CCS are extremely close to the reference
values, showing a perfect matching of the vector direction.
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Figure 8. CASE LL1: the history of the relaxation to force-free equilibrium. (a) Evolution of residual res(B1) with time (and the iteration steps); (b) evolution of the
maximum and average velocity; and (c) and (d) evolution of the metrics.

(A color version of this figure is available in the online journal.)

Table 1
CASE LL1: Results of the Metrics

Model Cvec CCS E′
n E′

m ε E/Epot

For r ∈ [1, 2]RS

Low 1 1 1 1 1 1.1741
Extrapolation 0.9995 0.9974 0.9609 0.9269 0.9783 1.1486
Potential 0.8595 0.8204 0.5261 0.4641 0.8517 1

For r ∈ [1, 1.5]RS

Low 1 1 1 1 1 1.1390
Extrapolation 0.9998 0.9995 0.9772 0.9668 0.9851 1.1220
Potential 0.8620 0.8236 0.5441 0.5013 0.8780 1

Table 2
CASE LL2: Results of the Metrics

Model Cvec CCS E′
n E′

m ε E/Epot

For r ∈ [1, 2]RS

Low 1 1 1 1 1 1.1042
Extrapolation 0.9999 0.9965 0.9807 0.9456 1.0061 1.1110
Potential 0.9049 0.8013 0.5733 0.4515 0.9056 1

For r ∈ [1, 1.5]RS

Low 1 1 1 1 1 1.0999
Extrapolation 0.9999 0.9997 0.9864 0.9810 1.0063 1.1068
Potential 0.9055 0.8529 0.5861 0.5174 0.9092 1
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Figure 9. Same as Figure 8 but for CASE LL2.

(A color version of this figure is available in the online journal.)

Results of vector error E′
n and E′

m also score close to 1 (even
the error of the most sensitive metric E′

m is smaller than
10%), while the potential solutions have results of only ∼0.5.
This is very encouraging, since in previously reported tests
of the Cartesian or spherical NLFFF extrapolation code with
only the photospheric boundary provided, e.g., those done by
Schrijver et al. (2006), Valori et al. (2007), Wiegelmann (2007),
and Tadesse et al. (2009), results with E′

m > 0.9 are rarely
achieved. These two metrics show that the original solutions
are reconstructed with very high accuracy. Finally, the energy
content of the non-potential fields, a critical parameter from
the extrapolation used to calculate the energy budget in solar

eruptions, is also well reproduced (with errors under several per
cent). By comparison of the metrics, we find that accuracy of
the lower region is even higher than in the full region, which
means the strong fields are extrapolated better than the upper
region weak fields. In real solar fields, only the lower part of the
corona is close to force-free, while the upper corona is not more
force-free because of the expansion of hot plasma (Gary 2001).
Thus, extrapolating the lower region fields closer to the original
force-free solution than the upper region fields is consistent with
the real solar conditions.

Table 3 gives the metrics measuring force-freeness and
divergence-freeness of the fields, which are rather small and

10
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X

Y

Z

Figure 10. Example of global extrapolation with the AMR grid. The sphere represents the photosphere with grid structure outlined by the black lines (note that here
each mesh cell represents one grid block). The color lines represent the magnetic field lines and the gray image represents the radial field Br . A slice of z = −0.3 is
plotted to show the radial mesh structure. Note that the high-resolution blocks are clustered around the active regions.

(A color version of this figure is available in the online journal.)

Table 3
Results for the Metrics Measuring Force-freeness and Divergence-freeness

Case CWsin 〈|fi |〉 E∇×B E∇·B
LL1 2.11 × 10−2 3.73 × 10−4 9.04 × 10−3 1.83 × 10−2

LL2 2.68 × 10−2 4.09 × 10−4 5.94 × 10−3 7.64 × 10−3

close to the level of discretization error. Unlike the first two
metrics (CWsin and 〈|fi |〉), which mainly characterize the
geometric properties of the field, metrics E∇×B and E∇·B
are introduced to measure the physical effect of the residual
divergence and Lorentz forces on the system in the actual
numerical computation (Jiang & Feng 2012a). This is important
when checking the NLFFF solution if it is used to initiate any
full MHD simulations. Of the present extrapolation results, the
residual forces are less than 1% of the magnetic-pressure force.

4.3. Convergence Study

We finally give a study of convergence of the extrapolation. In
Figures 8 and 9, we show how the system relaxes and reaches its
final force-free equilibrium by plotting the temporal evolution
of several parameters, including the residual of field B1

resn(B1) =
√√√√1

3

∑
δ=x,y,z

∑
i

(
Bn

iδ − Bn−8
iδ

)2

∑
i

(
Bn

iδ

)2 (27)

(where n denotes the iteration steps2), the maximum and average
velocity, and the nine metrics described above. The system

2 In the present experiments, we record the parameters not every time step
but every eight steps to save the total computing time, thus n − 8 means the
residual is for the full eight steps.
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converged very quickly from an initial residual of >10−1 to
value ∼10−5 with time of 100τA (about 6000 ∼ 8000 iteration
steps; see panels (a) of the figures). The evolution of the plasma
velocity indicates that initially (1) the system is driven away
from the starting v = 0 state and then (2) by the relaxation
process, a static equilibrium is reached as expected with a
rather small residual velocity which is only on the order of the
numerical error O(Δx2) of the CESE solver. All the metrics
plotted in the figures converged after 40τA (less than 2000
iteration steps), when the residual is on the order of 10−4, and
the convergence speed of CASE LL2 is even faster than that of
CASE LL1. Note that the metrics 〈|fi |〉 and E∇·B, like the plasma
velocity, first climb to a relatively high level (see panel (d)) and
then drop to the level of discretization errors. In principle, the
divergence-free constraint of B should be fulfilled throughout
the evolution, at least close to the level of the discretization
error. However, an ideally dissipationless induction equation,
Equation (1), with divergence-free constraint can preserve
the magnetic connectivity, which makes the topology of the
magnetic field unchangeable (Wiegelmann 2008) unless a finite
resistivity is included to allow the reconnection and changing
of the magnetic topology (Roumeliotis 1996). In the present
implementation in which no resistivity is included in the
induction equation, allowing high values in ∇ · B in the
initial evolution process (indicated by the climb of metric
〈|fi |〉) may provide some freedom for changes in the magnetic
topology (also note that a numerical diffusion can help topology
adjustment).

Besides the extrapolation accuracy, the computing time also
matters for a practical use of the NLFFF code. In the present
tests, the size of the Yin–Yang grid is equivalent to 80×90×180
in an ordinary spherical grid. The computation is completed in
less than 2 hr using 32 processors of Intel Xeon CPU E5450
(3.00GHz). In practical applications, the computing time can be
further reduced considering that it is not necessary to evolve the
system to 100τA.

5. CONCLUSIONS

In this work, we present a new code for NLFFF extrapolation
of the global corona. The method is implemented by installing
the previous code CESE–MHD–NLFFF in the Cartesian geom-
etry onto a Yin–Yang spherical grid. By this grid system, we
can incorporate intrinsically the full-sphere computation and
avoid totally the problems involved with the spherical poles.
The boundary conditions are only specified on the bottom sphere
and are free of any lateral-boundary information. We have ex-
amined the performance of this newly developed code using two
test cases of the classic semi-analytic force-free fields by Low
& Lou (1990). We show that the code runs fast and achieves
good accuracy with the extrapolation solution very close to the
reference field and the force-freeness and divergence-freeness
constraints well fulfilled.

We note that the success of extrapolating the model solutions
(i.e., the ideal force-free test cases) does not necessarily indicate
successful application to the real solar data, which contain
various inconsistencies and uncertainties. A practical solution
to this issue may be attributed to some preprocessing methods
as developed by Wiegelmann et al. (2006) and Fuhrmann
et al. (2007), or to a more realistic MHD model focused
on the photosphere–chromosphere interface with atmosphere
stratification. For another important issue, reconstruction that
needs to be performed with a much larger field of view (to more

entirely characterize the currents between ARs and high over
the AR) and with a higher spatial resolution (to capture the
fine critical structures such as magnetic null point) is severely
limited by the computational capability. Application with a
grid of about 5003 pixels is almost the upper limit for the
computational capability of most recently developed or updated
codes. This is rather unsatisfied if considering extrapolation
with the 4096 × 4096 SDO/HMI magnetograms. Combining
the global extrapolation code with the AMR, according to the
intrinsic characteristics of the solar magnetic field in which
the ARs represent only a small fraction of the whole surface,
appears to be a promising way to resolve this issue. By the AMR
technique, one can focus on the local corona, e.g., some ARs in
the context of global extrapolation with the corresponding high-
resolution vector magnetograms embedded in a low-resolution
global vector or LoS map, as exemplified by Figure 10. In this
figure,3 mesh for the ARs is refined with three more grid levels
than the background full-sphere grid (a block-AMR algorithm
(Powell et al. 1999) is used, and the ratio of resolutions between
the grid levels is 2). The grid structure can be dynamically
adjusted during the MHD-relaxation process to capture the
strong currents and important magnetic structures (e.g., flux
ropes) by carefully designing the AMR refinement criteria. Our
future work will include performing more stringent testing of the
code and installation of the code on an AMR grid for practical
application to SDO/HMI data.

The work is jointly supported by the 973 program un-
der grant 2012CB825601, the Chinese Academy of Sciences
(KZZD-EW-01-4), National Natural Science Foundation of
China (41031066, 40921063, 40890162, and 41074122), and
the Specialized Research Fund for State Key Laboratories.
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