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The Kurganov scheme is a third-order semi-discrete central numerical algorithm. The high solution of the scheme
is ensured by a piecewise quadratic non-oscillatory reconstruction which consists of the cell-average data. We
employ a modification of the smooth limiter of reconstruction in a simple way. The modified limiter possesses
rigorous positivity and the reformulation does not change the non-oscillatory property of reconstruction. In
order to explore the potential capability of application of the modified Kurganov scheme to magnetohydrody-
namics (MHD) and resistive magnetohydrodynamics (RMHD) equations, two numerical problems are simulated
in two dimensions (2D). These numerical simulations demonstrate that the modified Kurganov scheme keeps high
precision and has stable reliable results for MHD and RMHD applications.
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The Kurganov method has been proposed in a
series of papers.[1−5] This scheme is a high-order
semi-discrete central Godunov-type method employ-
ing more precise information of the local speeds of
waves. This central scheme has the advantages such
as high solution, small numerical dissipation and sim-
plicity. It also has no Riemann solvers and char-
acteristic decomposition. In recent years, some re-
searchers have applied the semi-discrete scheme into
various problems with source terms and advanced the
fourth- or fifth-order schemes by constructing different
reconstructions.[6−11] In order to further reduce the
numerical diffusion, Kurganov and his colleagues have
developed the semi-discrete central scheme into semi-
discrete central-upwind scheme.[2,12−14] The semi-
discrete central-upwind schemes not only retain the
advantages of central schemes but also are character-
ized by upwind nature, since the width of the Riemann
fans is estimated by one-sided information of the local
propagation speeds. There are three components of
this method: a piecewise polynomial reconstruction,
a spatial flux discretization and an ordinary differen-
tial solver. In order to obtain third-order accuracy,
the essentially non-oscillatory (ENO)[15,16] reconstruc-
tion or its weighted extensions[17−19] are used to build
a piecewise quadratic approximation. This kind of
reconstruction is constructed by a quadratic polyno-
mial interpolant function, a convex combination of the
function and the given cell averages.

In two dimensions, the reconstruction is a bivariate
quadratic polynomial. This reformulation may result
in an oscillatory interpolant and a negative smooth
limiter. To overcome this shortcoming, Kurganov et
al.[1] has proposed another algorithm of smooth limiter

at local extreme points. However, this smooth limiter
can not always fill the requirement: 1 − 𝜃 = O(∆𝑥3)
and in their paper, they have not proved that the re-
construction is non-oscillatory. In order to solve this
problem, we redefine some correlation functions to
obtain the corresponding smooth limiter and recon-
struction polynomials in this Letter. It can be proved
mathematically that the expression of smooth limiter
is positive and the polynomials are non-oscillatory in
all directions. We will briefly describe the Kurganov
method and give a detailed introduction of the modi-
fied smooth limiter.

Consider the two-dimensional hyperbolic conserva-
tion laws

𝑢𝑡 + 𝑓(𝑢)𝑥 + 𝑔(𝑢)𝑦 = 0. (1)

For the sake of simplicity, uniform grids are consid-
ered. Let (𝑥𝑗 , 𝑦𝑘) = (𝑗∆𝑥, 𝑘∆𝑦), (𝑥𝑗± 1

2
, 𝑦𝑘± 1

2
) =

((𝑗 ± 1
2 )∆𝑥, (𝑘 ± 1

2 )∆𝑦), 𝑡𝑛 = 𝑛∆𝑡, 𝑢𝑛
𝑗 = 𝑢(𝑥𝑗 , 𝑡

𝑛),
with ∆𝑥, ∆𝑦, ∆𝑡 being the grid lengths and time step.
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Fig. 1. (a) The corresponding points along the coordi-
nates for 𝑢. (b) The points along the diagonal line.
According to Refs. [1,2], using the genuinely

multi-dimensional approach, the corresponding semi-
discrete central-upwind scheme for Eq. (1) is

𝑑

𝑑𝑡
�̄�𝑗,𝑘(𝑡) = −

𝐻𝑥
𝑗+ 1

2 ,𝑘
(𝑡) −𝐻𝑥
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2 ,𝑘

(𝑡)

∆𝑥
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𝑗,𝑘+ 1
2

(𝑡) −𝐻𝑦
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2

(𝑡)
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, (2)
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where the numerical fluxes are

𝐻𝑥
𝑗+ 1

2 ,𝑘
=

𝑎+
𝑗+ 1

2 ,𝑘

6(𝑎+
𝑗+ 1

2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

)

[︁
𝑓(𝑢𝑁𝐸

𝑗,𝑘 ) + 4𝑓(𝑢𝐸
𝑗,𝑘) + 𝑓(𝑢𝑆𝐸

𝑗,𝑘 )
]︁
−

𝑎−
𝑗+ 1

2 ,𝑘

6(𝑎+
𝑗+ 1

2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

)

[︁
𝑓(𝑢𝑁𝑊

𝑗+1,𝑘) + 4𝑓(𝑢𝑊
𝑗+1,𝑘)

+ 𝑓(𝑢𝑆𝑊
𝑗+1,𝑘)

]︁
+

𝑎+
𝑗+ 1

2 ,𝑘
𝑎−
𝑗+ 1

2 ,𝑘

6(𝑎+
𝑗+ 1

2 ,𝑘
− 𝑎−

𝑗+ 1
2 ,𝑘

)

[︁
𝑢𝑁𝑊
𝑗+1,𝑘 − 𝑢𝑁𝐸

𝑗,𝑘 + 4(𝑢𝑊
𝑗+1,𝑘 − 𝑢𝐸

𝑗,𝑘) + 𝑢𝑆𝑊
𝑗+1,𝑘 − 𝑢𝑆𝐸

𝑗,𝑘

]︁
,

𝐻𝑦

𝑗+ 1
2 ,𝑘

=
𝑏+
𝑗,𝑘+ 1

2

6(𝑏+
𝑗,𝑘+ 1

2

− 𝑏−
𝑗,𝑘+ 1

2

)

[︁
𝑔(𝑢𝑁𝑊

𝑗,𝑘 ) + 4𝑔(𝑢𝑁
𝑗,𝑘) + 𝑔(𝑢𝑁𝐸

𝑗,𝑘 )
]︁
−
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𝑗,𝑘+ 1

2

6(𝑏+
𝑗,𝑘+ 1

2

− 𝑏−
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2

)
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𝑔(𝑢𝑆𝑊

𝑗,𝑘+1) + 4𝑔(𝑢𝑆
𝑗,𝑘+1)

+ 𝑔(𝑢𝑆𝐸
𝑗,𝑘+1)

]︁
+

𝑏+
𝑗,𝑘+ 1

2

𝑏−
𝑗,𝑘+ 1

2

6(𝑏+
𝑗,𝑘+ 1

2

− 𝑏−
𝑗,𝑘+ 1

2

)

[︁
𝑢𝑆𝑊
𝑗,𝑘+1 − 𝑢𝑁𝑊

𝑗,𝑘 + 4(𝑢𝑆
𝑗,𝑘+1 − 𝑢𝑁

𝑗,𝑘) + 𝑢𝑆𝐸
𝑗,𝑘+1 − 𝑢𝑁𝐸

𝑗,𝑘

]︁
.

Here the one-sided local speeds 𝑎±
𝑗+ 1

2 ,𝑘
, 𝑏±

𝑗,𝑘+ 1
2

and
the corresponding point values 𝑢𝑗,𝑘 are the ones de-
scribed in Ref. [2] (see Fig. 1). The notation

�̄�𝑗,𝑘 =
1

∆𝑥∆𝑦

∫︁∫︁
𝐶𝑗,𝑘

𝑝𝑛𝑗,𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦

is the cell average over the interval 𝐶𝑗,𝑘 =
[𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2
]× [𝑦𝑘− 1

2
, 𝑦𝑘+ 1

2
]. The quadratic polynomi-

als 𝑝𝑛𝑗,𝑘 are convex combination of the basic parabolas
𝑞𝑛𝑗,𝑘 and the piecewise linear interpolant 𝐿𝑛

𝑗,𝑘. The ex-
pression of 𝑝𝑛𝑗,𝑘 is

𝑝𝑛𝑗,𝑘 = (1 − 𝜃𝑛𝑗,𝑘)𝐿𝑛
𝑗,𝑘 + 𝜃𝑛𝑗,𝑘 𝑞𝑛𝑗,𝑘, 0 6 𝜃𝑛𝑗,𝑘 6 1, (3)

where 𝜃𝑛𝑗,𝑘 is a smooth limiter.
In the following, we will describe the redefined

piecewise parabolic reconstruction in detail. In one
dimension, the algebraic polynomials 𝑞𝑛𝑗 is

𝑞𝑛𝑗 (𝑥) = �̄�𝑛
𝑗 − 1

24
(�̄�𝑛

𝑗+1 − 2�̄�𝑛
𝑗 + �̄�𝑛

𝑗−1)

+
1

2
(�̄�𝑛

𝑗+1 − �̄�𝑛
𝑗−1)

(𝑥− 𝑥𝑗)

∆𝑥

+
1

2
(�̄�𝑛

𝑗+1 − 2�̄�𝑛
𝑗 + �̄�𝑛

𝑗−1)
(𝑥− 𝑥𝑗)

2

(∆𝑥)2
.

(4)

We generalize this idea for the 2D case. For the points

along the line 𝑦 ≡ 𝑦𝑘, 𝑞𝑛𝑗,𝑘 have the form

𝑞𝑛𝑗,𝑘(𝑥, 𝑦𝑘) = �̄�𝑛
𝑗 − 1

24
(�̄�𝑛

𝑗+1 − 2�̄�𝑛
𝑗 + �̄�𝑛

𝑗−1)

− 1

24
(�̄�𝑛

𝑗,𝑘+1 − 2�̄�𝑛
𝑗,𝑘 + �̄�𝑛

𝑗,𝑘−1)

+
1

2
(�̄�𝑛

𝑗+1 − �̄�𝑛
𝑗−1)

(𝑥− 𝑥𝑗)

∆𝑥

+
1

2
(�̄�𝑛

𝑗+1 − 2�̄�𝑛
𝑗 + �̄�𝑛

𝑗−1)
(𝑥− 𝑥𝑗)

2

(∆𝑥)2
.
(5)

Let ∆
(𝑗)
𝑘 = 1

24 (�̄�𝑛
𝑗,𝑘+1 − 2�̄�𝑛

𝑗,𝑘 + �̄�𝑛
𝑗,𝑘−1), one can derive

the relationship 𝑞𝑛𝑗,𝑘(𝑥, 𝑦𝑘) = 𝑞𝑛𝑗 (𝑥) − ∆
(𝑗)
𝑘 . For the

given 𝑦𝑘, we can substitute 𝑞𝑛𝑗,𝑘 into the formulae

𝑀𝑗,𝑘 = max
𝑥∈I𝑗

𝑞𝑛𝑗,𝑘(𝑥, 𝑦𝑘), 𝑀𝑗 = max
𝑥∈I𝑗

𝑞𝑛𝑗 (𝑥),

𝑚𝑗,𝑘 = min
𝑥∈I𝑗

𝑞𝑛𝑗,𝑘(𝑥, 𝑦𝑘), 𝑚𝑗 = min
𝑥∈I𝑗

𝑞𝑛𝑗 (𝑥),

where I𝑗 is the cell [𝑥𝑗− 1
2
, 𝑥𝑗+ 1

2
]. Thus it is possible

to deduce that 𝑀𝑛
𝑗,𝑘 = 𝑀𝑛

𝑗 − ∆
(𝑗)
𝑘 , 𝑚𝑛

𝑗,𝑘 = 𝑚𝑛
𝑗 − ∆

(𝑗)
𝑘 .

In terms of the above definition, we redefine the
linear function 𝐿𝑛

𝑗,𝑘, the values of 𝑀 , 𝑚 at (𝑥𝑗± 1
2
, 𝑦𝑘)

and the limiter 𝜃𝑛𝑗,𝑘,

𝐿𝑛
𝑗,𝑘(𝑥𝑗 , 𝑦𝑘) = �̄�𝑛

𝑗,𝑘 + 𝑠𝑛𝑗,𝑘(𝑥− 𝑥𝑗),

𝑠𝑛𝑗,𝑘 = minmod

{︂
(�̄�𝑛

𝑗+1,𝑘 − �̄�𝑛
𝑗,𝑘)

∆𝑥
,

(�̄�𝑛
𝑗,𝑘 − �̄�𝑛

𝑗−1,𝑘)

∆𝑥

}︂
,

(6)

𝑀𝑛
𝑗± 1

2 ,𝑘
= max

{︁1

2

(︁
𝐿𝑛
𝑗

(︀
𝑥𝑗± 1

2

)︀
+ 𝐿𝑛

𝑗±1

(︀
𝑥𝑗± 1

2

)︀)︁
− ∆

(𝑗±1)
𝑘 , 𝑞𝑛𝑗±1,𝑘

(︀
𝑥𝑗± 1

2
, 𝑦𝑘

)︀}︁
,

𝑚𝑛
𝑗± 1

2 ,𝑘
= min

{︁1

2

(︁
𝐿𝑛
𝑗

(︀
𝑥𝑗± 1

2

)︀
+ 𝐿𝑛

𝑗±1

(︀
𝑥𝑗± 1

2

)︀)︁
− ∆

(𝑗±1)
𝑘 , 𝑞𝑛𝑗±1,𝑘

(︀
𝑥𝑗± 1

2
, 𝑦𝑘

)︀}︁
, (7)

𝜃𝑛𝑗,𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{︂
𝑀𝑛

𝑗+1
2
,𝑘
−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗+1

2

)︀
+Δ

(𝑗+1)
𝑘

𝑀𝑛
𝑗,𝑘−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗+1

2

)︀
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(𝑗)
𝑘

,
𝑚𝑛

𝑗− 1
2
,𝑘
−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗− 1

2

)︀
+Δ

(𝑗−1)
𝑘

𝑚𝑛
𝑗,𝑘−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗− 1

2

)︀
+Δ

(𝑗)
𝑘

, 1

}︂
, �̄�𝑛

𝑗−1 < �̄�𝑛
𝑗 < �̄�𝑛

𝑗+1,

min

{︂
𝑀𝑛

𝑗− 1
2
,𝑘
−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗− 1

2

)︀
+Δ

(𝑗−1)
𝑘

𝑀𝑛
𝑗,𝑘−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗− 1

2

)︀
+Δ

(𝑗)
𝑘

,
𝑚𝑛

𝑗+1
2
,𝑘
−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗+1

2

)︀
+Δ

(𝑗+1)
𝑘

𝑚𝑛
𝑗,𝑘−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗+1

2

)︀
+Δ

(𝑗)
𝑘

, 1

}︂
, �̄�𝑛

𝑗−1 > �̄�𝑛
𝑗 > �̄�𝑛

𝑗+1,

1, else.
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Substituting 𝑞𝑛𝑗,𝑘 into Eq. (7) yields

𝑀𝑛
𝑗± 1

2 ,𝑘
= 𝑀𝑛

𝑗± 1
2
− ∆

(𝑗±1)
𝑘 , 𝑚𝑛

𝑗± 1
2 ,𝑘

= 𝑚𝑛
𝑗± 1

2
− ∆

(𝑗±1)
𝑘 .

According to these definitions, the limiter can be simplified to

𝜃𝑛𝑗,𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{︂
𝑀𝑛

𝑗+1
2
−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗+1

2

)︀
𝑀𝑛
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𝑗,𝑘

(︀
𝑥
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2
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𝑚𝑛
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2
−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗− 1

2

)︀
𝑚𝑛

𝑗 −𝐿𝑛
𝑗,𝑘

(︀
𝑥
𝑗− 1

2

)︀ , 1

}︂
, �̄�𝑛

𝑗−1 < �̄�𝑛
𝑗 < �̄�𝑛

𝑗+1,

min

{︂
𝑀𝑛

𝑗− 1
2
−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗− 1

2

)︀
𝑀𝑛

𝑗 −𝐿𝑛
𝑗,𝑘

(︀
𝑥
𝑗− 1

2

)︀ ,
𝑚𝑛

𝑗+1
2
−𝐿𝑛

𝑗,𝑘

(︀
𝑥
𝑗+1

2

)︀
𝑚𝑛

𝑗 −𝐿𝑛
𝑗,𝑘

(︀
𝑥
𝑗+1

2

)︀ , 1

}︂
, �̄�𝑛

𝑗−1 > �̄�𝑛
𝑗 > �̄�𝑛

𝑗+1,

1, else.
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Fig. 2. (a) Density contours of interaction between shock
and plasma cloud at 𝑡 = 0.06 using a 200 × 200 uniform
grid; (b) ∇ · 𝐵 contours at 𝑡 = 0.06 using a 200 × 200
uniform grid; (c) the evolution of the error.

The combination of Eqs. (2)–(6) and Eq. (8) is
the modified third-order semi-discrete central-upwind

method. Different from Eq. (3.25) and Eq. (3.26) de-
fined by Kurganov et al.[1] the definitions of 𝐿𝑛

𝑗,𝑘 and
𝑠𝑛𝑗,𝑘 are employed in Eq. (6). Moreover, the definition
of 𝑞𝑛𝑗,𝑘 in 2D is modified in Eq. (5), which is differ-
ent from Eq. (3.24) defined by Kurganov et al.[1] The
difference between our modification and the former
expression lies in that the modified 𝑞𝑛𝑗,𝑘 goes with-
out the term ∆

(𝑗)
𝑘 . Thus, the modified smooth lim-

iter is greatly simplified. Through exact mathematical
demonstration, it can be proved that the reconstruc-
tion is non-oscillatory in all directions. The mathe-
matical proof is omitted here for save of space.

For verifying the application of the modified
scheme in MHD and RMHD, here two numerical sim-
ulations are discussed in 2D. The third order Runge–
Kutta time discrete method is used in all the simu-
lations to keep the stability of the method. The first
test is interaction between a magnetosonic shock and
a denser cloud. This problem has been widely consid-
ered in the literature[20−22] to model the disruption of
a high density cloud by a strong shock wave. The com-
putation domain is [0, 1]× [0, 1]. The initial conditions
are

(𝜌, 𝑢1, 𝑢2, 𝑢3, 𝑝, 𝐵1, 𝐵2, 𝐵3) =

{︂
(3.86859, 11.2536, 0, 0, 167.345, 0, 2.1826182, −2.1826182), 𝑥 < 0.05,

(1, 0, 0, 0, 1, 0, 0.56418985, 0.56418985), 𝑥 > 0.05,

and 𝛾 = 5/3. Thus, a discontinuity parallel to the
𝑦 axis at 𝑥 = 0.05. There is a circular cloud which
is centered at (0.25, 0.5) with a high density 𝜌 = 10
and radius 𝑟 = 0.15. The cloud is in the magneto-
hydrostatic balance with the surrounding fluid. The
open boundary condition is used for all boundaries of
the computation domain.

Figure 2(a) is contour plots of the density for
200 × 200 at 𝑡 = 0.06. The Courant–Friedrichs–Lewy
(CFL) number is 0.6. The profile is almost the same as
those obtained by Han and Tang.[21] The density con-
tours show that the modified scheme can catch shocks
accurately. Figure 2(b) is the divergence contours of
magnetic field at 𝑡 = 0.06. The distribution of ∇ ·𝐵
displays that the divergence of magnetic field is con-
centrated around the denser cloud and the main shock.
Figure 2(c) expresses the evolution of the error along
with time, in which the error 𝜎 =

∑︀
|∇·𝐵|

𝑛𝑥×𝑛𝑦 (the denom-
inator is the total number of simulation nodes). Here

∇ ·𝐵 = 𝜕𝐵
𝜕𝑥 + 𝜕𝐵

𝜕𝑦 , in which 𝜕𝐵
𝜕𝑥 and 𝜕𝐵

𝜕𝑦 are calculated
by the central difference method. The figure shows
that the error is not accumulated perniciously along
with time, which means that the modified scheme is
suitable and stable for solving MHD problems.

The second experiment is magnetic reconnection.
Here the investigation is taken for the turbulent mag-
netic reconnections near a local current sheet by
the RMHD models. The same problem solved by
Wei et al.[23,24] is chosen for simulation. This nu-
merical study is used to simulate the magnetic re-
connection phenomena in interplanetary space. The
computational domain is [−3, 3] × [−3, 3]. The two
plasma bulks with the same momentum and radius
(𝑟 = 0.3) are located on the sides of the current
sheet and centered at (−1.5, 1.5) and (1.5,−1.5), re-
spectively. Their initial values are given as follows:
𝜌𝑀1 = 3.8𝜌∞, 𝑉𝑀1 = −1.036𝑉𝐴0𝑖𝑦, 𝜌𝑀2 = 2.0𝜌∞,
𝑉𝑀2 = 1.912𝑉𝐴0𝑖𝑦. The assumptions of the current
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sheet are 𝐵0(𝑦) = 𝑏𝑥0𝑏𝑧0 tanh(𝑦)𝑖𝑥 + 𝑏𝑧0𝑖𝑧, 𝜌0(𝑦) =

𝜌∞ +
𝑏2𝑥0𝑏

2
𝑧0

8𝜋𝑅𝑇0
sech2(𝑦), 𝑉 = 0 and 𝑏𝑥0 = 0.1,𝑏𝑧0 = 𝑏∞.

The open boundaries are employed at 𝑦 = ±3 and the
periodic boundaries are taken at 𝑥 = ±3. The typical
interplanetary solar wind parameters 𝑏∞ = 8.33 nT,
𝑁0 = 5proton/cm3, 𝑇0 = 1.× 105 K, 𝑉𝐴0 = 𝐵∞

(4𝜋𝜌∞)1/2

are used as the dimensionless parameters. 𝑅 is the gas
constant.

(a) (b)

(c)
(d)





-3 -2 -1 0 1 2 3

-2

-1

0

1

2


-3 -2 -1 0 1 2 3





-3 -2 -1 0 1 2 3

-2

-1

0

1

2





















  

Time

E
rr

o
r

Fig. 3. Time evolution of the magnetic field lines in the
𝑥–𝑦 plane for magnetic reconnection: (a) 𝑡 = 2𝜏𝐴, (b)
𝑡 = 4𝜏𝐴, (c) 𝑡 = 6𝜏𝐴, (d) the evolution of the error at
𝑡 = 4𝜏𝐴.

Figures 3(a), 3(b) and 3(c) show the temporal evo-
lution of magnetic field lines with CFL of 0.1 for uni-
form grids 200 × 200 at 𝑡 = 2𝜏𝐴, 𝑡 = 4𝜏𝐴, 𝑡 = 6𝜏𝐴,
respectively. The results are almost the same as those
obtained by Wei et al.[24] Under the same momentum,
the occurrence of magnetic reconnection and the dis-
tortion of magnetic field lines begin earlier for the high
speed plasma bulk than the high density plasma bulk.
The results indicate that the modified method can
catch the magnetic reconnection preferably. Figure
3(d) shows the evolution of the error along with time.
The error of divergence of magnetic field is under 10−2

for most parts of time. Thus, the modified algorithm
keeps the properties of high-order scheme with a small
CFL number. The results prove the stability, high
solution and the non-oscillation of the scheme. The
figures also express that the modified scheme can be
efficiently used with time steps as small as required by
the CFL stability restriction.

In summary, we have proposed a modified third-
order central-upwind scheme and tested two numer-
ical experiments in 2D. In this new scheme, we pro-
vide a simpler non-linear limiter of the reconstruction

for the two-dimensional Kurganov method and it can
satisfy the restrict: 0 6 𝜃 6 1 all the time. The
corresponding reconstruction for the modified limiter
also keeps non-oscillatory property and high accuracy.
The modified scheme simplifies the original flux cal-
culation, unifies the reconstruction functions in the
axis directions and the diagonal directions and re-
duces the computational time consuming. Thus these
corrections may be viewed as an extension of the
Kurganov scheme. The numerical tests for interac-
tion between a magnetosonic shock and a denser cloud
and magnetic reconnection problems prove that the
modified scheme is robust and yields reliable results
for MHD and RMHD problems. Consequently, this
modified central-upwind formulation can be applied
to other problems of solar wind simulation, solar dis-
turbances in solar-terrestrial space and interplanetary
systems.[25−29]
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