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This paper presents a comparative study of divergence cleaning methods of magnetic

field in the solar coronal three-dimensional numerical simulation. For such purpose,

the diffusive method, projection method, generalized Lagrange multiplier method and

constrained-transport method are used. All these methods are combined with a

finite-volume scheme in spherical coordinates. In order to see the performance between

the four divergence cleaning methods, solar coronal numerical simulation for Carrington

rotation 2056 has been studied. Numerical results show that the average relative

divergence error is around 10−4.5 for the constrained-transport method, while about

10−3.1−10−3.6 for the other three methods. Although there exist some differences in the

average relative divergence errors for the four employed methods, our tests show they

can all produce basic structured solar wind.

Keywords: magnetic field divergence cleaning, three-dimensional MHD, solar corona, numerical simulation, solar

wind

1. INTRODUCTION

Magnetohydrodynamics (MHD) equations are presently the only system available to self-
consistently describe large-scale dynamics of space plasmas, and numerical MHD simulations has
enabled us to capture the basic structures of the solar wind plasma flow and transient phenomena.
The modern MHD codes can successfully solve both in time accurate and steady state problems
involving all kinds of discontinuities. Different from the usual computational fluid mechanics, the
MHD scheme has to be designed so as to guarantee the divergence free constraint of the magnetic
field in two or three-dimensional MHD calculations. It is well-known that simply transferring
conservation law methods for the Euler to the MHD equations can not be supposed to work at
default in maintaining the divergence-free of magnetic field. The ∇ · B error accumulated during
the calculation may grow in an uncontrolled fashion, which can result in unphysical forces and
numerical instability (Tóth, 2000; Jiang et al., 2012a).

Several methods have been proposed to satisfy the ∇ · B = 0 constraint in MHD calculations.
The eight-wave formulation approach, suggested by Powell et al. (1993, 1999), is to solve the MHD
equations with the additional source terms that are proportional to ∇ · B without modifying the
MHD solver. In this approach, divergence of the magnetic can be controlled to a truncation error
and the robustness of a MHD code can be improved (Hayashi, 2005; Jiang et al., 2012a,b). The
projection method was first proposed by Brackbill and Barnes (1980). In the projection method,
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the magnetic field B∗ provided by the base scheme in the new
time step n+ 1 is projected onto the subspace of zero divergence
solutions by a linear operator, and the magnetic field in the
new time step n + 1 is completed by this projected magnetic
field solution (Brackbill and Barnes, 1980; Tóth, 2000; Balsara
and Kim, 2004; Hayashi, 2005; Feng et al., 2010). Some authors
(e.g., Brandenburg et al., 2008; Manabu et al., 2009) modify the
MHD equations with the help of vector potential A instead of
the magnetic field B = ∇ × A to keep divergence cleaning

FIGURE 1 | Partition of a sphere into six identical components with partial overlap (left) and one-component mesh stacked in the r direction (right).

FIGURE 2 | The model results with CT divergence cleaning method, the magnetic field lines, radial speed vr (km/s), and number density N(log10/cm3)

on the meridional plane of φ = 180◦
− 0◦ (top) and φ = 270◦

− 90◦ (bottom) from 1 to 20 Rs.

condition. In this case, ∇ · (∇ × A) = 0 is guaranteed
mathematically, such that solving the time evolution of the
vector potential A maintains the magnetic field divergence-free
during the time evolution. The diffusive method is to add a
source term η∇(∇ · B) in the induction equation to reduce the
numerical error of ∇ · B, so that the numerically generated
divergence can be diffused away at the maximal rate limited
by the CFL condition (van der Holst and Keppens, 2007; Feng
et al., 2011; Shen et al., 2014). To guarantee the divergence
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cleaning of the magnetic fields, Dedner et al. (2002) proposed
the hyperbolic divergence cleaning approach by introducing a
generalized Lagrange multiplier (GLM). In the GLM method, a
newly transport variable ψ is introduced to the MHD system,
which plays the role of convecting the local divergence error out
of the computational domain (Dedner et al., 2002, 2003;Mignone
and Tzeferacos, 2010; Mignone et al., 2010; Jiang et al., 2012a,b;
Susanto et al., 2013). The constrained transport (CT) method is
a different strategy to control ∇ · B originally devised by Evans
and Hawley (1988), in which the magnetic field is defined at
face centers and the remaining fluid variables are provided at
cell centers. In this approach, the electric field along the cell
edges defining the boundary of the corresponding face is used to
calculate the magnetic flux at cell faces. The CT method sustains
a specified discretization of the magnetic field divergence around
the machine round off error as long as the boundary and initial
conditions are compatible with the constraints (Ziegler, 2011,
2012; Feng et al., 2014).

Since magnetic fields with a non-zero divergence can lead to
severe artifacts in numerical simulations, keeping the magnetic
field divergence-free is a curial problem in space plasma physics
of solar and interplanetary phenomena. To say a few without
exhausting, Linker et al. (1999) used the vector potential method
to maintain the ∇ · B constraint for global solar corona

simulations. Hayashi (2005) simulate the solar corona and
solar wind using the eight-wave method and the projection
method to reduce the nonphysical effects of ∇ · B. Jiang et al.
(2012a,b) simulated the coronal and chromospheric microflares
by adopting the eight-wave method and the extended generalized
Lagrange multiplier (EGLM) method to clean the divergence
error. The GLM method was used in a nonlinear force-free field
(NLFFF) study for the dynamics of solar active region (Inoue
et al., 2015). The eight-wave method, the projection method,
the CT method and the GLM method were implemented (Tóth,
2000; Tóth et al., 2005, 2012; Feng et al., 2010, 2011, 2014; Shen
et al., 2014) for solar coronal and heliospheric studies, so as to
maintain the solenoidal constraint.

In this paper, we give a comparative study of divergence
cleaningmethods of magnetic field in the solar coronal numerical
simulation. The CT method, the diffusive method, the projection
method and the GLM method are used to maintain divergence
constraint respectively. The 3D solar wind model (Feng et al.,
2014) is used for the experiments. The code employed a semi-
discrete central scheme, designed by Ziegler (2011, 2012) within
an finite volume (FV) framework without a Riemann solver or
characteristic decomposition, and a composite grid system in
spherical coordinates without polar singularities (Feng et al.,
2010, 2011, 2014).

FIGURE 3 | The model results with diffusive divergence cleaning method, the magnetic field lines, radial speed vr (km/s), and number

density N(log10/cm3) on the meridional plane of φ = 180◦
− 0◦ (top) and φ = 270◦

− 90◦ (bottom) from 1 to 20 Rs.
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This paper proceeds as follows. In Section 2, model equations
and grid system for solar wind plasma in spherical coordinates
are described. Section 3 introduces the four methods to maintain
the divergence cleaning constraint on the magnetic field. Section
4 gives the initial and boundary conditions in the code. Section
5 presents the numerical results for the steady-state solar wind
structure of Carrington rotation (CR) 2056. Finally, we present
some conclusions in Section 6.

2. GOVERNING EQUATIONS AND MESH
GRID SYSTEM

2.1. Governing Equations
The magnetic field B = B1 + B0 is splitted as a sum of a time-
independent potential magnetic field B0 and a time-dependent
deviation B1 (Feng et al., 2010, 2014). The MHD equations are
splitted into the fluid and the magnetic parts. The governing
equations have the same form as Feng et al. (2014). The fluid part

of the vector U =
(

ρ, ρvr, ρvθ , ρvφr sin θ, e
)T

reads as follows:

∂U

∂t
+

1

r2
∂

∂r
r2F+

1

r sin θ

∂

∂θ
sin θG+

1

r sin θ

∂

∂φ
H = S (1)

The magnetic induction equation runs as follows:

∂B1r

∂t
+

1

r sin θ

∂

∂θ
(sin θ(vθBr − vrBθ ))−

1

r sin θ

∂

∂φ

(vrBφ − vφBr) = 0 (2)

∂B1θ

∂t
−

1

r

∂

∂r
(r(vθBr − vrBθ ))+

1

r sin θ

∂

∂φ
(vφBθ − vθBφ) = 0

(3)

∂B1φ

∂t
+

1

r

∂

∂r
(r(vrBφ − vφBr))−

1

r

∂

∂θ
(vφBθ − vθBφ) = 0 (4)

Here, ρ is the mass density, v = (vr, vθ , vφ) are the flow velocities
in the frame rotating with the Sun, p is the thermal pressure.
e stands for the modified total energy density consisting of the
kinetic, thermal, and magnetic energy densities (written in terms
of B1).

2.2. Mesh Grid System
Following Feng et al. (2010, 2012a,b,c), the computational
domain is divided into a composite mesh consisting of six
identical component meshes designed to envelop a spherical
surface with partial overlap on their boundaries (Figure 1).

In the present work, the parallel implementation over the
whole computational domain from 1 Rs to 26 Rs is realized

FIGURE 4 | The model results with projection divergence cleaning method, the magnetic field lines, radial speed vr (km/s), and number density

N(log10/cm3) on the meridional plane of φ = 180◦
− 0◦ (top) and φ = 270◦

− 90◦ (bottom) from 1 to 20 Rs.
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by domain decomposition of six-component grids based on the
spherical surface and radial direction partition. The following
grid partitions are employed: Nθ = Nφ = 42.1r(i) = 0.01 Rs

if r(i) < 1.1 Rs;1r(i) = min(A× log10(r(i− 1)),1θ × r(i− 1))
with A = 0.01/log10(1.09) if r(i) < 3.5 Rs;1r(i) = 1θ × r(i− 1)
if r(i) > 3.5 Rs.

3. NUMERICAL SCHEME FORMULATION

The following four subsections are devoted to the introduction of
four methods to maintain the divergence cleaning constraint on
the magnetic field.

3.1. CT Method
By the usage of a special discretization of the magnetic field
Equations (2)–(4), CT technique imitates the analytical fact that
∂∇·B
∂t = ∇ · ∇ × (v × B) = 0. This discretization is routinely

made on a particular stencil, therefore employs a staggered
mesh, over which the solenoidal constraint up to the machine
accuracy is satisfied on condition that initially ∇ · B = 0 is met
in the whole computational domain. The hydrodynamic state
variables are evaluated at the cell center, whereas magnetic field
is evaluated at the cell faces and the electric field is at the cell
edges. The origin of this technique is attributed to the staggered

divergence-free scheme formulated for electromagnetism by
Yee (1966). For spatial discretization of our numerical scheme
formulation, we strictly follow those of Feng et al. (2014) by
using the FV discretization of Equation (1), and by averaging
Equations (2)–(4) over facial areas to obtain the semi-integral
forms of magnetic induction equations. Second-order accurate
linear ansatz reconstruction are adopted.

3.2. Diffusive Method
The diffusive method in maintaining the divergence-free
constraint runs as follows. As usual, regarding the coupling of
fluids and magnetic fields as a whole system, then we have

U =
(

ρ, ρvr, ρvθ , ρvφr sin θ, e,B1r,B1θ ,B1φ
)T

∂U

∂t
+

1

r2
∂

∂r
r2F+

1

r sin θ

∂

∂θ
sin θG+

1

r sin θ

∂

∂φ
H = S (5)

with the symbols having their routine meanings, three variables
added into Equation (1), and the first five variables keeping the
same.

We use the diffusive method proposed to handle the ∇ · B
constraint. A source term η∇(∇·B) is introduced in the induction
equation to reduce the numerical error of ∇ · B. The ∇ · B error

FIGURE 5 | The model results with GLM divergence cleaning method, the magnetic field lines, radial speed vr (km/s), and number density

N(log10/cm3) on the meridional plane of φ = 180◦
− 0◦ (top) and φ = 270◦

− 90◦ (bottom) from 1 to 20 Rs.
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produced by the diffusive method is controlled by iterating

Bn+1 = Bn+1 + η1t∇(∇ · Bn+1)

η1t ≤ Cd

(

1
(1r)2

+ 1
(r1θ)2

+ 1
(r sin θ1φ)2

)−1
, where 1r,1θ,1φ

are grid spacings in spherical coordinates. Here, we set Cd = 1.3
(van der Holst and Keppens, 2007; Rempel et al., 2009; Feng et al.,
2011; Shen et al., 2014). This artificial diffusivity does not violate
shock capturing property or second-order accuracy at least in
smooth regions, but higher order accuracy may depend on the
slope limiter used.

3.3. Projection Method
In the projection method formulation, the magnetic field B∗

obtained by the base scheme using Equation (5) is projected onto
the subspace of zero divergence solutions by a linear operator,
and the magnetic field in the new time step n+ 1 is completed by
this projected magnetic field solution Bn+1. That is, the magnetic
field can be decomposed by the sum of a curl and a gradient

B∗ = ∇ × A+ ∇φ

After taking the divergence of both sides one can achieve a
Poisson equation

∇2φ = ∇ · B∗ (6)

Then the magnetic field is corrected by

Bn+1 = B∗ −∇φ (7)

The numerical divergence of Bn+1 can be exactly zero if the ∇2φ

in Equation (4) is evaluated as a divergence of the gradient with
the same difference operators as used for calculating ∇ · B∗.
In order to solve Equation (4), a pseudo-time derivative is
introduced to the equation (Hayashi, 2005)

∂φ

∂τ
= ∇2φ − ∇ · B∗

We adopt a first-order backward finite difference scheme for the
pseudo-time derivative with the pseudo-time step 1τ (< 1t).
If we want obtain an accurate transient solution, the pseudo-
time (sub-iterations) must get converged at each physical time
step. But this is too costly to make the sub-iteration procedure
performed until convergence to machine precision. In this

paper, besides setting up convergence criterion 1φ
1τ

≤ 10−6

of the pseudo-time (sub-iterations), we also set up maximal
sub-iterations 10 to avoid infinite iterations.

3.4. GLM Method
Using the GLM (Dedner et al., 2002), the divergence constraint
is coupled with the conservation laws by introducing a newly

FIGURE 6 | The number density N(log10/cm3) and radial speed vr (km/s) distribution along heliocentric distance with different latitudes θ = 100◦ (top)

and θ = 174◦ (bottom) at the same longitude φ = 0◦ from the four divergence cleaning methods.
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variable ψ . Now, the governing Equations (5) contain nine
equations with the ninth equation written in the following form

∂ψ

∂t
+ c2h∇ · B = −

c2
h

c2p
ψ

The fluxes for magnetic field have following forms F6 = c2
h
,G7 =

c2
h
,H8 = c2

h
, S6 = 2ψ

r , S7 = 1
r (Bθvr − Brvθ ) + ψ cot θ

r . The ch
is often chosen to be the largest eigenvalue in the computational
domain

ch = maxi,j,k
(

|vr| + cfr, |vθ | + cf θ , |vφ | + cfφ
)

Here, cfr, cf θ , and cfφ are the fast magnetosonic speeds
in the (r, θ, φ) directions, defined respectively by

cfr = 1√
2

√

c2s + c2A + ((c2s + c2A)
2 − 4c2s

B2r
µρ

)
1
2 , cf θ =

1√
2

√

c2s + c2A + ((c2s + c2A)
2 − 4c2s

B2θ
µρ

)
1
2 , cfφ =

1√
2

√

c2s + c2A + ((c2s + c2A)
2 − 4c2s

B2φ
µρ

)
1
2 , where cs =

√

γ p
ρ

and cA =
√

B2r+B2θ+B2φ
µρ

are the sound and Alfvénic speeds.

As for cp, we follow Mignone and Tzeferacos (2010) and
Mignone et al. (2010) by setting the parameter α = 1hch/c

2
p,

1h = min(1r, r1θ, r sin θ1φ) and we choose α = 0.1 in
our code. Initially, ψ is set to 0. The φ at the inner and outer
boundaries is fixed.

3.5. Time Integration
Time integration for the full system is implemented over time
with a second-order Runge-Kutta scheme (Ziegler, 2004; Fuchs
et al., 2009; Feng et al., 2014).

U
∗ = U

n +1tRU[U
n
,B

n
]

B
∗ = B

n +1tRB[U
n
,B

n
]

U
n+1 =

1

2
U
n +

1

2
(U

∗ +1tRU[U
∗
,B

∗
]) (8)

B
n+1 =

1

2
B
n +

1

2
(B

∗ +1tRB[U
∗
,B

∗
]) (9)

As usual, the time step length is limited by the Courant-
Friedrichs-Lewy (CFL) stability condition:

1t=CFL/max





√

(
|vr|+cfr

1r
)2+(

|vθ | + cf θ

r1θ
)2 + (

|vφ | + cfφ

r sin θ1φ
)2





FIGURE 7 | The log10Error1(B) in the calculation at t = 5 h on the meridional plane of φ = 180◦
− 0◦ from 1 to 20 Rs, the results from CT method (left)

and diffusive method (right) are displayed in the top row, the bottom row is from the projection method (left) and GLM method (right).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 7 March 2016 | Volume 3 | Article 6

http://www.frontiersin.org/Astronomy_and_Space_Sciences
http://www.frontiersin.org
http://www.frontiersin.org/Astronomy_and_Space_Sciences/archive


Zhang and Feng Magnetic Field Divergence-Free Study

Here, RU[U,B] and RB[U,B], denote the discretized fluxes
moved to the right-hand sides of the governing Equations (1)–
(4) and their corresponding source terms. In the following run
we employ a simultaneous time integration with CFL= 0.5.

4. INITIAL-BOUNDARY VALUE
CONDITIONS

Initially, the magnetic field is specified by using the potential
field source surface (PFSS) model to produce a 3D global
magnetic field in the computational domain with the line-of-sight
photospheric magnetic data from the Wilcox Solar Observatory.
B calculated by PFSS model inevitably can have a very small but
non-zero∇·Bwhen evaluated in the discretized space. The initial
profiles of flow parameters such as plasma density ρ, pressure
p, and velocity v are given by Parker’s solar wind flow solution
(Parker, 1963).

In this paper, the inner boundary at 1 Rs is fixed for simplicity.
The solar wind parameters at the outer boundary are imposed
by linear extrapolation across the relevant boundary to the ghost
node. The horizontal boundary values of each component grid
in the (θ, φ) directions in the overlapping parts of the six-
component system are determined by interpolation from the
neighbor stencils lying in its neighboring component grid, which
has been detailed (Feng et al., 2010, 2014).

5. NUMERICAL RESULTS

In this section, we present the numerical results fromCR 2056 for
the solar coronal numerical simulation with these four methods
to maintain the divergence-free constraint.

To see the differences with the four divergence cleaning
methods in solar corona simulation, Figures 2–5 show the
magnetic field lines, radial speed vr , and number density N
on two different meridional planes at φ = 180◦ − 0◦ and
φ = 270◦ − 90◦ from 1 to 20 Rs, where the arrowheads on
the black lines stand for the magnetic field directions. The four
divergence cleaning methods can all produce structured solar
wind. At high latitudes, the magnetic field lines extend into
interplanetary space and the solar wind in this region has a
faster speed and lower density. On the contrary, the slow solar
wind and high density are located at lower latitudes around the
Heliospheric current sheet (HCS). We can also see a helmet
streamer stretched by the solar wind in this region. Above the
streamer, a thin current sheet exists between different magnetic
polarities.

Figure 6 presents the variation of number densityN and radial
speed vr from 1 Rs to 20 Rs with the four divergence cleaning
methods at different latitudes θ = 174◦ and θ = 100◦ , where
θ = 174◦ corresponds to the open field region while θ = 100◦

corresponds to the HCS region. Reasonably, the speed is larger
in the open field region holding the fast solar wind, while the

FIGURE 8 | The log10Error2(B) in the calculation at t =5h on the meridional plane of φ = 180◦
− 0◦ from 1 to 20 Rs, the results from CT method (left)

and diffusive method (right) are displayed in the top row, the bottom row is obtained from the projection method (left) and GLM method (right).
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FIGURE 9 | The log10Error3(B) in the calculation at t =5h on the meridional plane of φ = 180◦
− 0◦ from 1 to 20 Rs, the results from CT method (left)

and diffusive method (right) are displayed in the top row, the bottom row follows from the projection method (left) and GLM method (right).

speed is smaller in theHCS region for the slow solar wind, and the
number density changes contrarily to that of the speed. Overall,
the four divergence cleaning methods can all produce large-scale
solar wind.

To quantitatively see how ∇ · B evolves, we define three

relative divergence errors of the cell as Error1(B) =
∣

∣

∣

∫

Vk
∇·BdV

∣

∣

∣

∫

Sk
|B|dS ,

Error2(B) = |∇·B|·|R|
|B| , and Error3(B) = |∇·B|·|R|√

2p
(Powell et al.,

1999; Pakmor and Springel, 2013; Mocz et al., 2014), where
Vk is the kth sliding volume cell involved with the mesh
grids, and Sk is the surface areas involved with Vk, and R =
√

3
1

(1r)2
+ 1

(r1θ)2
+ 1

(r sin θ1φ)2

is the characteristic size of the cell.

Figures 7–9 show the Error1(B) and Error2(B) and Error3(B) of
the four divergence cleaning methods at t = 5 h on the meridional
plane of φ = 180◦ − 0◦. From these figures we can see that
all the divergence cleaning methods can keep the ∇ · B related
errors under control, however, there are some differences in the
relative magnitude of the resulting divergence errors. As is clearly
visible in these figures, the divergence error is larger in the inner
boundary for CT method compared to the other three methods,
as to the outer region, that is on the contrary. That is because
the local divergence error can be convected out of the domain
using the diffusive method, the projection method or the GLM

method, and the CTmethodmaintain the initial divergence error
unchanged in computation.

Figures 10–12 show the Error1(B), Error2(B), and Error3(B)
of the four divergence cleaning methods at t = 20 h on the
meridional plane of φ = 180◦ − 0◦. Compared to Figures 7–9,
there have small difference of the four methods, which verify that
these methods keeping the divergence error small and no obvious
large error appears in computation. The divergence error for CT
method stays almost the same after t = 5 h. As for GLM method,
the divergence error is convected out of the domain. Overall, the
spatial distribution of the errors for these four methods are very
similar and the relative divergence errors are around 10−3−10−8.

Figure 13 gives the evolution of the average relative
divergence errors as a function of time from the four methods
in the calculation. The average relative divergence errors

defined as Error1(B)ave =
∑M

k=1

∣

∣

∣

∫

Vk
∇·BdV

∣

∣

∣

∫

Sk
|B|dS /M, Error2(B)ave =

∑M
k=1

|∇·B|·|R|
|B| /M, Error3(B)ave =

∑M
k=1

|∇·B|·|R|√
2p

/M, where M

is the total number of cells in the computational domain.
From this figure we can see that Error1(B)ave for CT method
is around 10−4.6 , for diffusive method is around 10−3.7, for
GLM method is around 10−3.6 and for projection method is
around 10−3.2. The Error2(B)ave is larger than Error1(B)ave and
Error3(B)ave. The average relative divergence errors stay the
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FIGURE 10 | The log10Error1(B) in the calculation at t = 20 h on the meridional plane of φ = 180◦
− 0◦ from 1 to 20 Rs, the results from CT method (left)

and diffusive method (right) are displayed in the top row, the bottom row is provided by the projection method (left) and GLM method (right).

same after 10 h and no obvious large error appears after a
long run time. This verifies that the numerical error for the
magnetic field divergence can continue to be acceptable during
calculation. The CT method has the smallest average relative
divergence errors compared to the other three methods and the
errors stay the same as initial in calculation, the initial magnetic
fields evaluated in the discretized space contributes significantly
to the average relative divergence errors. The average relative
divergence errors for diffusive method are smaller than GLM
method or projection method. The relative divergence errors of
diffusive method and projection method are affected by maximal
sub-iterations, increasing maximal sub-iterations will make
the relative divergence errors decrease but is time-consuming.
Figures 14, 15 shows the average relative divergence errors for
diffusive method and projection method using maximal sub-
iterations 30. The Error1(B)ave for diffusive method is about
10−4.3, and for projection method is about 10−3.3, the errors
become small compared to Figure 13. Since increasing the
maximal sub-iterations will decrease the computation efficiency,
and Figure 13 also shows the results are acceptable without
increasing the maximal sub-iterations. So we use sub-iteration
1 for diffusive method and maximal sub-iterations 10 for
projection method in our code.

It is important to note that for all methods the average relative
divergence errors are small, the spatial distribution of the errors

are very similar for them. Although the employed approach to
limit divergence errors are significantly different and there have
some differences in the average relative divergence errors as
a function of time, there are excellent agreement for them in
solar corona simulation, they can all produce structured solar
wind.

6. CONCLUSIONS AND DISCUSSIONS

In this study, we employ four methods to maintain divergence
cleaning constraint of magnetic field and compared the
differences between them in solar corona simulation. All these
algorithms are combined with a finite-volume scheme based on
a six-component grid system in spherical coordinates (Ziegler,
2011, 2012; Feng et al., 2014), numerical results show that
they can all produce large-scale solar wind though the relative
divergence errors are different for them.

The CT method maintain the ∇ · B = 0 constraint
by utilizing a special discretization on a staggered grid. This
method evolves area-averaged magnetic field components at
the cell faces rather than volume-averaged quantities as fluid
part, and electric field components on cell edges are needed.
The CT method is attractive from a physical point of view,
however, requires the magnetic field variables to be treated
differently from the fluid variables, which may be inconvenient
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FIGURE 11 | The log10Error2(B) in the calculation at t = 20 h on the meridional plane of φ = 180◦
− 0◦ from 1 to 20 Rs, the results from CT method (left)

and diffusive method (right) are displayed in the top row, the bottom row is produced from the projection method (left) and GLM method (right).
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FIGURE 12 | The log10Error3(B) in the calculation at t =20h on the meridional plane of φ = 180◦
− 0◦ from 1 to 20 Rs, the results from CT method (left)

and diffusive method (right) are displayed in the top row, the bottom row is produced from the projection method (left) and GLM method (right).
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FIGURE 13 | The temporal evolution of the log10Error1(B)
ave, log10Error2(B)

ave, and log10Error3(B)
ave from the four divergence cleaning methods in

the calculation.

FIGURE 14 | The temporal evolution of the log10Error1(B)
ave and log10Error2(B)

ave and log10Error3(B)
ave from the projection method with different

maximal sub-iterations.

FIGURE 15 | The temporal evolution of the log10Error1(B)
ave and log10Error2(B)

ave and log10Error3(B)
ave from the diffusive method with different

maximal sub-iterations.

for implementation. The diffusive method reduce the numerical
error of ∇ · B by adding a source term in the induction
equation. The projection method involves the solution of a
poisson equation after every time step to correct errors of ∇ · B,
and thus can be coupled with any numerical scheme, but solving
the additional Poisson equation can significantly increase the

computational cost. The GLM method maintain the ∇ · B = 0
constraint by introducing a newly transport variable ψ is to
the MHD system. The GLM method is fully conservative in
mass, momentum, magnetic induction and energy, it is effective
in controlling divergence error and can easily be applied on
general grids. Our numerical results showed the CT method can
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maintain the average relative divergence error around 10−4.5. The
diffusive method can maintain the average relative divergence
error about 10−3.6, and we only use sub-iteration 1 in this paper,
increasing maximal sub-iterations will decrease the relative
divergence error. The average relative divergence error for GLM
method is about 10−3.3 and for projection method is 10−3.1.
So the CT method and the diffusive approach can maintain
divergence cleaning constraint better, the diffusive method is
a good choice by considering simplicity, and the CT method
should be considered while we want to capture the discontinuity
structure. The projection method in our paper is a preliminary
try and we think the result can be better if we use multigrid in the
future.

Although there have some differences in the average relative
divergence errors for the four employed methods, the differences
dose’t effect the large-scale solar wind structure and they can all
produce structured solar wind. They all produce many typical
properties of the solar wind, such as an obvious slow speed
area near the slightly tilted HCS plane and a fast speed area
near the poles, and high density in the slow speed area and
vice versa in both poles. Overall, our model can produce all

the physical parameters everywhere within the computation
domain.

AUTHOR CONTRIBUTIONS

MZ run the cases and plotted all the figures. Both MZ and
XF are involved in the development of the three-dimensional
MHD code, the analysis numerical results, the writing of the
manuscript.

ACKNOWLEDGMENTS

The work is jointly supported by the National Basic Research
Program of China (Grant No. 2012CB825601), the National
Natural Science Foundation of China (Grant Nos. 41231068,
41504132, 41274192, and 41531073), the Knowledge Innovation
Program of the Chinese Academy of Sciences (Grant No. KZZD-
EW-01-4), and the Specialized Research Fund for State Key
Laboratories. The numerical calculation has been completed
on our SIGMA Cluster computing system. The Wilcox Solar
Observatory is currently supported by NASA.

REFERENCES

Balsara, D. S., and Kim, J. (2004). A comparison between divergence-cleaning

and staggered-mesh formulations for numerical magnetohydrodynamics.

Astrophys. J. 602, 1079–1090. doi: 10.1086/381051

Brackbill, J. U., and Barnes, D. C. (1980). The effect of nonzero ∇ · B on the

numerical solution of the magnetohydrodynamic equations. J. Comput. Phys.

35, 426–430. doi: 10.1016/0021-9991(80)90079-0

Brandenburg, A., Rädler, K. H., Rheinhardt, M., and Käpyla, P. J. (2008). Magnetic
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