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Abstract A hybrid intelligent source surface model applying the artificial neural network tactic for solar
wind speed prediction is presented in this paper. The model is a hybrid system merging various
observational and theoretical information as input. Different inputs are tested including individual
parameters and their combinations in order to select an optimum. Then, the optimal model is implemented
for prediction. The prediction is validated by both error analysis and event-based analysis from 2007 to 2016.
The overall correlation coefficient is 0.74, and the root-mean-square error is 68 km/s. The probability for
detecting a high-speed-event is 0.68, the positive predicted value is 0.73, and the threat score is 0.55.

1. Introduction

It is generally acknowledged that space weather effects have become a great threat to human society,
because more and more modern technologies are exposed to the space environment. (Baker, 1998;
Bothmer & Daglis, 2007; Feynman & Gabriel, 2000; Hapgood, 2011; Siscoe, 2000). One of the most damaging
space weather effects is geomagnetic storms. Although most large geomagnetic storms are driven by
coronal mass ejections (CMEs; Tsurutani et al., 1988), the ambient solar wind can also be very geoeffective,
particularly in the corotating interaction regions (CIRs) where the fast and slow solar winds interact with each
other (Richardson et al., 2002; Tsurutani et al., 2006). The high-speed streams (HSSs) and enhanced magnetic
field of CIRs can cause long-living and recurrent geomagnetic storms, which may last for several days
(Borovsky & Denton, 2006; Burlaga & Lepping, 1977; Gosling & Pizzo, 1999; Tsurutani et al., 1988, 1995,
2006; Zhang et al., 2007). Since there are fewer CMEs during the declining and minimum phases of a solar
cycle (Alves et al., 2006), the overall contribution of CIRs to the geomagnetic activity is significant
(Tsurutani et al., 2006). Thus, in order to mitigate the space weather effects, reliable forecasts of the near-
Earth ambient solar wind conditions are required as well as the CMEs. Furthermore, the ambient solar wind
parameters can provide background condition for kinematical and dynamical models of CME propagation
(Gopalswamy et al., 2001; Lugaz et al., 2005; Shen et al., 2013, 2014; Vršnak & Gopalswamy, 2002) and inter-
planetary shocks (Dryer et al., 2004; Zhao & Dryer, 2014).

Currently, there are mainly two kinds of methods for predicting the ambient solar wind conditions. One kind
is the physical-based magnetohydrodynamic (MHD) models, and the other is empirical or semiempirical
models. As one of the most powerful tool to study and predict the space environment, a large number of
MHD models have been developed and continuously improved by researchers all around the world.
Examples of successful solar wind MHDmodels are the ENLIL model (Odstrcil, 2003; Odstrcil et al., 2004) used
at the Space Weather Prediction Center of the National Oceanic and Atmospheric Administration (SWPC/
NOAA), the Space Weather Modeling Framework (SWMF) at the Center for Space Environment Modeling
(CSEM; Tóth et al., 2005), the CORona-HELiosphere (CORHEL) model developed by the Center for
Integrated Space Weather Modeling (CISM; Riley et al., 2001), the Hybrid Heliospheric Modeling System
(HHMS; Detman et al., 2006, 2011; Intriligator et al., 2012), a combining 3-D MHD model (Wu et al., 2007,
2011) with the Hakamada-Akasofu-Fry (HAF) code (Fry et al., 2001), the COrona-INterplanetary (COIN) model,
the improved interplanetary total variation diminishing (IN-TVD) and SIP-AMR-CESE model developed by the
SIGMA group at Chinese Academy of Sciences (Feng et al., 2007, 2010; Shen et al., 2009), the CRONOS
model (Kissmann et al., 2008; Wiengarten et al., 2013), the space weather integrated forecasting framework
(SWIFF; Lapenta et al., 2013), the Lyon-Fedder-Mobarry (LFM) heliospheric model (Merkin et al., 2011;
Pahud et al., 2012), the MHD model by Usmanov and Goldstein (2003, 2006), the MHD model by
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Hayashi (2005, 2012), and Hayashi, Tokumaru, et al. (2016), and other MHD models mentioned in the
review of Wu and Dryer (2015).

Empirical or semiempirical models are also important research aspects for space weather, because of their
efficiency, simplicity, and comparable forecasting skills to the more complicated and computational-
expensive MHDmodels (Owens et al., 2008; Riley et al., 2006). One of the most commonly used semiempirical
model is the Wang-Sheeley-Arge (WSA) model. It was first developed as a piecewise function by Wang and
Sheeley (1990) based on the observed negative correlation between solar wind speed at 1 AU and the expan-
sion factor (fs) of coronal magnetic field at the source surface (2.5 solar radii [RS]). Arge and Pizzo (2000)
improved the relation to a continuous function. Then, another parameter θb, which is the angular distance
from the coronal hole boundary (Riley et al., 2001), was added by Arge et al. (2003) to give the current func-
tional form. The Potential Field Source Surface (PFSS) model (Altschuler & Newkirk, 1969; Schatten et al., 1969)
is usually used to calculate the coronal magnetic field and derive the fs and θb parameters.

Another big family of empirical models relies on the relation between coronal hole area and solar wind speed,
which was discovered many years ago (Levine et al., 1977; Nolte et al., 1976; Sheeley & Harvey, 1981).
Researchers have improved this kind of models in various ways with the help of better quality observations
such as SOHO and SDO (de Toma, 2011; Lowder et al., 2014; Luo et al., 2008; Obridko et al., 2009; Robbins
et al., 2006; Verbanac et al., 2011; Vršnak et al., 2007). In addition to the solar wind speed, similar relations
were discovered for other parameters (temperature, density, and magnetic field magnitude; Rotter et al.,
2012, 2015; Vršnak et al., 2007).

Other techniques have been implemented in empirical models to predict solar wind parameters near the
Earth. Owens et al. (2013) presented a simple way to make predictions of the solar wind parameters based
on the 27-day periodicity, resulting from the 27-day rotation of the Sun. They made a comprehensive analysis
of the model performance and pointed out that the method can represent a benchmark for other space
weather forecast models. Innocenti et al. (2011) applied Kalman filters to implement data assimilation and
made a significant improvement compared to the baseline model (Vršnak et al., 2007). Liu et al. (2011) pre-
dicted the solar wind speed by applying a support-vector-machine algorithm, but their predictions were only
3 hr ahead of real time. Bussy-Virat and Ridley (2014) developed the probability distribution function (PDF)
model based solely on the 1-AU solar wind observations. They claimed that the PDFmodel can be better than
the persistence model for a prediction horizon from 8 to 120 hr and better than the WSAmodel for prediction
horizons shorter than 24 hr. The PDF model was then improved to predict high-speed events (Bussy-Virat &
Ridley, 2016). Wintoft and Lundstedt (1997, 1999) developed a hybrid intelligent system combined the PFSS
model and an artificial neural network (ANN) to give prediction of the daily-averaged solar wind speed.

The main advantages of using an ANN include the following: it can handle large data sets, it has the ability to
capture nonlinear and complex underlying relationships of any physical process with plenty of data, it can be
easily implemented in parallel computational architectures (such asmulticore processors and graphic proces-
sing units) to reduce the processing time, and it has good fault tolerance, since the corruption of a few neu-
rons does not prevent it from total functioning. ANN techniques have been applied to space weather for
prediction of sunspot number and the solar cycle (Calvo et al., 1995; Conway et al., 1998; Fessant et al.,
1996), prediction of CME transit time (Liu et al., 2018; Sudar et al., 2015), prediction of proton event (Gong
et al., 2004), prediction of solar flare (Borda et al., 2002; Qahwaji & Colak, 2007; Wang et al., 2008), prediction
of solar wind velocity (Wintoft & Lundstedt, 1999), prediction of electron flux in magnetosphere (Bortnik et al.,
2016; Chu et al., 2017; Koons & Gorney, 1991; Ling et al., 2010; Wu & Lundstedt, 1997; Zhelavskaya et al., 2017),
and prediction of geomagnetic activity (Boberg et al., 2000; Cai et al., 2010; Lazzús et al., 2017; Macpherson
et al., 1995; Uwamahoro et al., 2012; Valach et al., 2009; Wintoft et al., 2017). A detailed introduction can be
found in the review of Lundstedt (2005). Although the knowledge of solar wind have greatly improved from
both observations and theories, the accuracy of ANN techniques in modeling solar wind conditions at 1 AU
has not improved in the last two decades (Wintoft & Lundstedt, 1997, 1999). The recent improvements in
space and ground-based instruments have enabled solar and heliospheric observations with much higher
temporal and spatial resolution, which can improve the performance of data-driven models. For example,
the accuracy of the PFSS model in modeling the coronal magnetic field depends on the quality of the
magnetogram that was used as input of the model (Liu et al., 2012; Hayashi, Yang, et al., 2016; Riley et al.,
2014). The PFSS modeling accuracy also depends on some other factors, such as the magnetogram
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smoothing procedures (Hayashi, Yang, et al., 2016), the hypothesis of
source-surface radius (Lee et al., 2011), and the spherical polynomial calcu-
lation method (Tóth et al., 2011). We also noticed that theoretical studies
may be useful to improve the solar wind prediction by ANN. Studies have
linked the photo magnetic field strength to the solar wind speed observed
at 1 AU (Fujiki et al., 2015; Suzuki, 2006; Suzuki & Inutsuka, 2005). Riley et al.
(2015) demonstrated that the angular distance from the coronal hole
boundary (θb) played an important role as a solar wind speed indicator.
The θb has been routinely used with fs in the current WSA model at
SWPC/NOAA. Recent research studies have proved that global coronal
magnetic field models can be improved by using image-based informa-
tion (Conlon & Gallagher, 2010; Jones et al., 2016, 2017). Thus, the white
light brightness observation from LASCO/SOHO or SECCHI/STEREO may
also be useful to improve a solar wind prediction model.

Consequently, we aim to develop a hybrid ANN model to predict the solar
wind parameters at 1 AU, using knowledge from both theory and observa-
tions. In this paper, we only focus on the prediction of the solar wind

speed. Prediction of other solar wind parameters is left for future work. In section 2, we describe the ANN
algorithm and the hybrid model used in our study. In section 3, we introduce the data source used for this
study, and the data set prepared for ANN training. All the modeling results are presented in section 4. In
section 4.1, we show the training performances of different ANNs with different input in order to select the
best one. In section 4.2, we show the training results of the optimal ANN we discovered. Then, results of
implementing the optimal ANN for prediction are presented in section 4.3. The conclusions are made in
section 5.

2. Methods
2.1. ANN

ANN is an intelligent computing system inspired by the biological neural networks like human brains. ANN
can progressively improve performance on a task by analyzing a large number of examples, like the learning
process of humans.

An ANN is constructed by a group of interconnected nodes called artificial neurons. The artificial neurons can
transmit a signal from one to another by their connection. A neuron calculates a weighted sum of its inputs
and applies a transfer function to obtain the signal that will be transmitted to a next neuron. Artificial neurons
are usually organized in layers. Different layers may perform different kinds of transformations on their
inputs. ANN adjusts the weights to minimize the error between input and output as a learning process
(Haykin, 2004).

Various types of ANNs have been established through these years, different from architecture of node con-
nections and learning algorithms. The ANN we apply in this study is a widely used feedforward neural net-
work with one hidden layer, similar to that used in Boberg et al. (2000) and Wintoft et al. (2017). The
commonly used Levenberg-Marquardt backpropagation algorithm is implemented in the learning process.
Figure 1 shows the architecture of this three-layer feedforward ANN. Each circular node represents an artifi-
cial neuron, and each arrow represents a connection from the output of one neuron to the input of another
neuron. The blue, yellow, and red color of circles are used to distinguish different layers. The white arrows can
be considered as weights of the input from its left side layer. The input layer containsm nodes, each for a kind
of input characteristic parameter that may associate with the output. The hidden layer contains n nodes, and
the output layer has only one node for a certain solar wind parameter.

The output of this ANN can be calculated as follows:

y ¼ g b0 þ ∑nj¼1vj f j bj þ ∑mi¼1wjixi
� �� �

(1)

where xi is the normalized input vector, wji is the weights between node i of input layer and node j of hidden

Figure 1. The architecture of a three-layer feedforward artificial neural net-
work (ANN) used in this study. Each circular node represents an artificial
neuron, and each arrow represents a direction to transmit signals. The white
arrows can be considered as weights and biases of inputs from its left side.
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layer, vj are the weights between hidden layer and the output, bj and b0 represent the biases, and y is the final
output. Bipolar sigmoid nonlinear activation function fj is applied as the hidden layer transfer function, while
a linear function g is applied for the output layer. The f function is calculated as

f xð Þ ¼ 2
1þ e�2x

� 1 (2)

After a certain ANN architecture is determined, it has to be trained with an input-output data set to adjust its
weights in order to generate the output as similar as possible to the true output. Before training, the full data
set is split randomly into three sets called training, validation, and test set. Then, we iteratively use the train-
ing set to minimize the mean-squared errors (MSEs) between the network output and the target output. For
the input data with a total number of Q, MSE is calculated as follows:

MSE ¼ 1
Q
∑Qq¼1 tq � yq

� �2
(3)

where y is the ANN output value and t is the observed target value. For each iteration in the training phase,
the MSE is also computed by using validation set. The number of iterations of training phase is experimentally
determined by assuring the MSE decreases. This procedure can help to avoid the training results biasing
toward a particular section of the database. Finally, the specific weights that minimize validation MSE give
the optimal network. The test set is left only for a performance evaluation.

The iteration step updates weights and biases using the Levenberg-Marquardt backpropagation algorithm
(LMBP). We can define W as the vector of network weights and biases:

W ¼ W1 W2…WN½ �T ¼ w1;1 w1;2…wji v1 v2…vj b1 b2…bj b0
� �T

; (4)

where N = n(m + 1) + (n + 1) is the total number of weights and biases. The error vector e is defined by

e ¼ e1 e2…eQ½ �T (5)

eq Wð Þ ¼ tq � yq (6)

where eq is the error for the qth sample and Q is the total sample number. Then the training evaluation para-
meter MSE can be expressed as

MSE ¼ 1
Q
∑Qq¼1 eq

� �2
(7)

And the Jacobian matrix for the network training can be expressed as

J Wð Þ ¼

∂e1 Wð Þ
∂W1

∂e1 Wð Þ
∂W2

∂e2 Wð Þ
∂W1

∂e2 Wð Þ
∂W2

⋯

∂e1 Wð Þ
∂WN

∂e2 Wð Þ
∂WN

⋮ ⋱ ⋮
∂eQ Wð Þ
∂WN

∂eQ Wð Þ
∂WN

⋯
∂eQ Wð Þ
∂WN

2
6666666664

3
7777777775

(8)

From iteration step k to k + 1, the weights and biases can be updated by the following equations:

Wkþ1 ¼ Wk þ ΔWk (9)

ΔW ¼ JT Wð ÞJ Wð Þ þ μI
� ��1

JT Wð Þe Wð Þ (10)

where I is the identity matrix and μ is the learning rate. A detailed derivation of the equations above and the
whole LMBP algorithm theory was introduced by Hagan and Menhaj (1994) and Hagan et al. (1996).
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After an ANN has been trained, the forecast results implementing the ANN needmore quantitative evaluation
to show themodel performance. Besides the MSE, the following statistical parameters will also be used in this
paper: (a) the root-mean-square errors (RMSE), (b) the standard deviation (STD), and (c) the correlation
coefficient (R).

For a set of input data with a total number Q, the RMSE, STD, and R are calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q
∑Qq¼1 tq � yq

� �2
r

(11)

STD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q
∑Qq¼1 yq � y

� �2
r

(12)

R ¼
∑Qq¼1 tq � t

� �
yq � y

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Qq¼1 tq � t

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Qq¼1 yq � y

� �2
r (13)

where y is the ANN output value and t is the observed target value. While the RMSE and the R value directly
compare the ANN output with the observations, the STD only characterizes the variability of one or the other
(ANN or observations).

2.2. Hybrid Intelligent Source Surface (HISS) Model

In this paper, we develop an ANN using characteristic parameters obtained from both theoretical model and
observational information as input to predict ambient solar wind condition at 1 AU. We call this combined
system the HISS model, similar as the concept proposed by Wintoft and Lundstedt (1997).

PFSS (Altschuler & Newkirk, 1969, Schatten et al., 1969) is a commonly used physical model to extrapolate the
coronal magnetic field from observed photospheric magnetograms. After the coronal magnetic field is
determined, we can obtain the fs and θb by tracing field lines. The fs is calculated by the function:

f s ¼ B0
Bss

	 

R0
Rss

	 
2

(14)

where Bss is the magnetic field strength at the source surface, B0 is the magnetic field strength at the photo-
sphere, R0 is the solar radius, and Rss is the radius of the source surface (we define Rss = 2.5R0 in this paper).
After tracing field lines, we can know the location of open magnetic field, that is, the coronal holes, then θb is
obtained by calculating the angular distance to the nearest coronal hole boundary. The field line foot-point
location at the photosphere can also be determined. Then we note the heliolatitude of the foot-point as L0.
The latitude difference between a point and the heliospheric current sheet can be understood as magnetic
latitude, noted Lm. Thus, we could obtain six possible input parameters from a PFSS model, namely, fs, θb,
Bss, B0, L0, and Lm.

The white light brightness observed by coronagraph can be used to optimize the extrapolated coronal mag-
netic field as mentioned in section 1. As a derivative, coronal density can be inversed from observed polarized
brightness (pB) data (Van de Hulst, 1950; Wang & Davila, 2014). The inversion process uses IDL routines asso-
ciated with pb_inverter.pro from SolarSoftWare (SSW, http://www.lmsal.com/solarsoft/) library to calculate the
field-of-view density map. Then we extract the density at the source surface to construct the density synoptic
maps, similar to the magnetic synoptic maps. We note the density at the source surface Nss and consider it as
a possible character for the ANN input.

Most data-driven solar wind models only use solar observations as inputs, as described in section 1. However,
the 1 AU in situ observations can also be used for a model as data assimilation technique, like a few works
have done (Bussy-Virat & Ridley, 2014, 2016; Innocenti et al., 2011). We can use the value of a solar wind para-
meter 27 days ago as another input characteristic parameter of the ANN. The solar wind speed 27 days ago is
further noted as PS27. The persistence technique is implemented in the PDF model as well (Bussy-Virat &
Ridley, 2014, 2016).
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All in all, the HISS model presented in this paper is a three-layer feedforward ANN, hybridized with a PFSS
physical model and merged information from both solar and heliosphere observations.

3. Data
3.1. Data Source

Global Oscillation Network Group (GONG) magnetograms of the observed photospheric magnetic field are
provided by National Solar Observatory (NSO, http://gong.nso.edu/). GONG data are available since late
2006. We use GONG data as input data of the PFSS model in this study.

OMNI data set is a compilation of 1963-to-current near-Earth solar wind magnetic field and plasma data from
several spacecraft in geocentric orbits or at the L1 Lagrange point. This study uses the hourly averaged solar
wind data downloaded from OMNI web (http://omniweb.gsfc.nasa.gov).

The polarized brightness (pB) data we used in this study was derived from white light coronagraph observa-
tion of LASCO/SOHO, and it can be downloaded from the LASCO instrument website at NRL (http://lasco-
www.nrl.navy.mil/content/retrieve/polarize/). The pB data are available since the SOHO launch in 1996.

3.2. Training Data Set Preparation

An input-output data set must be prepared before training the ANN. The selection of representative data sets
and input characters is very important to the ANN performance. The possible input characters we prepared
include fs, θb, B0, Bss, L0, Lm, Nss, and PS27, as presented in section 2. The output is the corresponding solar wind
observation at 1 AU including velocity, density, temperature, and magnetic field strength. To associate the
input data at the source surface and the output data at 1 AU, we use an average solar wind propagating time
of four days. The input parameters at the time t0 are used to predict the solar wind parameters up to t0 + four
days. We have also tested to map back the solar wind parameters assuming a constant solar wind speed or
considering the CIR effects using the method developed by Arge and Pizzo (2000). However, the ANN perfor-
mance by using thesemethods would be slightly worse, and with an RMSE about 10 km/s higher than that by
using the method presented in this paper.

We use a data scope from year 2007 to 2016. This period covers all the four phases (descending, minimum,
ascending, and maximum) of a solar cycle, so that the ANN could learn the properties of all these phases. We
divide the data of year 2007–2015 randomly into three sets named training set, validation set, and test set, as
described in section 2. The percentage of the training set in the whole data set is 70%, while the validation set
and the test set are both 15%. The data of year 2016 is left for a final validation of the model since this con-
tinuous period is totally not involved in training procedure.

Because the input and output variables have much different ranges, they have to be normalized before train-
ing. We normalize the data to the range from �1 to 1. The values will be unnormalized to physical values
after training.

4. Results

In this section, we present a detailed study for the prediction of solar wind speed (V). Performances of differ-
ent ANNs using different input parameters and hidden node numbers are introduced in section 4.1. Then,
training results of the optimal ANN are shown in section 4.2. Finally, the optimal model is implemented for
prediction and is validated by comparing with observations and other models in section 4.3.

4.1. Selection of ANN

Choosing the proper input parameters is the most important process in developing an ANN model. The hid-
den node number of an ANN architecture also affects the ANN performance. The best input parameters and
the proper hidden node number could only be determined experimentally.

First, we tested the ANNs using different individual parameters as input. The tested parameters were fs, θb, B0,
Bss, L0, Lm, Nss, and PS27 respectively. Meanwhile, we also tested how the performances varied with the change
of ANN hidden node number. The correlation coefficient (R) and RMSE are shown in Figure 2.

As shown in Figure 2, the correlation from the highest to the lowest is respectively PS27, θb, fs, Bss, Lm, L0, Nss,
and B0. The RMSE from the lowest to the highest is PS27, θb, fs, Bss, Lm, L0, Nss, and B0 respectively. The R and
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RMSE results accord with each other, as the higher R and the lower RMSE both indicate the better model
performance. The θb and fs have relatively good correlation with velocity as expected, since they have
been successfully used in the WSA model for many years. The ANN using only fs as input gives a R of 0.35
and a RMSE of 89 km/s, which is consistent with the results of Wintoft and Lundstedt (1999). Finally, the
increase of hidden node number does not evidently improve the performances of all ANNs using
individual parameters.

Since each parameter may provide unique useful constraining information on solar wind prediction, we dis-
cuss the effect of different combinations of these parameters, which can be easily realized in ANN. We start
from only one parameter, then incrementally add one more parameter in each additional test. The sequence
of addition is from the parameter of the best correlation to the parameter of less correlation. Although the L0
has a better correlation, it is considered to be added only after B0, because it is a parameter from the photo-
sphere as B0, and we assume parameters on the source surface to be more reliable for prediction. PS27 is
added last in spite of its high correlation, since it is a near-Earth observational data while other parameters
are derived from coronal observations. PS27 could be considered as a data assimilation parameter, different
from all other parameters. For a future study, we could change PS27 to other near-Earth observation for dif-
ferent applications. For example, we could change it to one-day persistent data for a one-day-forward predic-
tion. Overall, the combinations used here are the following ones: (θb, fs); (θb, fs, Bss); (θb, fs, Bss, Lm); (θb, fs, Bss, Lm,

Figure 2. The performances of artificial neural networks (ANNs) with different individual input parameters and different
hidden node number. The left panel shows the correlation coefficients R, and the right panel shows root-mean-square
error (RMSE).

Figure 3. The performance of artificial neural networks (ANNs) using different combination of parameters as input and
different hidden node number. The left panel shows the correlation coefficients R, and the right panel shows root-mean-
square error (RMSE).

10.1029/2018SW001955Space Weather

YANG ET AL. 7



Nss); (θb, fs, Bss, Lm, Nss, B0); (θb, fs, Bss, Lm, Nss, B0, L0); and (θb, fs, Bss, Lm, Nss, B0, L0, PS27), noted as C2, C3, C4, C5,
C6, C7, and C8 for short, respectively.

As shown in Figure 3, using combined different parameters as input can give much better fit than any indi-
vidual parameter. The performance of the correlation in the left panel and the RMSE in the right panel accord
with each other, similar as in Figure 2.

Different combinations and node number have very different performances. Using the same number of hid-
den node, ANN performance gets better with more parameters included. Using all parameters as input gives
the best fit. We can also see that the performances are better with more hidden nodes within 150, but it
might go down when the node numbers are bigger than 150, depending on the inputs used. We could con-
clude from the figure that the more parameters are input, the bigger hidden node number should be used.
But big hidden node number is not necessary for small input parameter number, since the slope is higher for
models with a large number of inputs than that with a small number of inputs. For example, the R value of C2
only increased from 0.45 to 0.47, but the R value of C8 increased greatly from 0.64 to 0.77 when the node
number varied from 5 to 200. This is also consistent with Figure 2, which shows that the performance of each
model with a single input does not depend on the number of nodes.

Figure 4. Regression results of the optimal artificial neural network (ANN). The blue, green, red, and grey dots represent the
data points in training set, validation set, test set, and all data set, respectively. The horizontal axis is the observational
value, and the vertical axis is the output of ANN.
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Finally, the optimal ANN is the one with 150 hidden nodes and using all of
θb, fs, Bss, Lm, Nss, B0, L0, and PS27 as input parameters, with a correlation of
~0.78 and a RMSE of ~60 km/s. The weights and biases of the optimal ANN
are recorded in the supporting information.

4.2. Training Performance of the Optimal ANN

Before applying the optimal ANN to a solar wind speed prediction, we
should examine its training performance carefully. The regression results
of the optimal ANN are presented in Figure 4. The training set, validation
set, test set, and the whole data set are shown in different panels with dif-
ferent color. The correlation coefficients of different sets are noted in the
title of each panel. We can see that all the sets performed nicely, with R
values above 0.76. The training set is a little better with an R value of about
0.78, which could be anticipated.

Figure 5a shows the variation of ANN performance during the training
procedure. We can see that the MSE decreases quickly in the first five
epochs (iterations) and continues to decrease slowly until meet our
training goal of 3,600 (km/s)2 at the 20th epoch. The performance of
the training, validation, and test sets are very close to each other during
all the epochs.

The error distribution histogram of the optimal ANN is presented in
Figure 5b. The training set, validation set, and test set are shown in blue,
green, and red color, respectively. We can see that most errors are in a
range of �69 to 72 (km/s), which is consistent with the RMSE results.
However, there are still a few large errors, limited in a range of �210 to
326 (km/s). The large errors may be caused by some influence factors
rather than the input characters we used, such as the influence of ICMEs,
which are not excluded from our data set. It is also noticed that instances
of different sets are proportional, which is consistent with the result shown
in Figure 4.

From the training performance exhibited above, we can infer that this ANN
may have good prediction capability and nice generalization ability.

4.3. Implementation of the Optimal ANN for Prediction

In the following, wemake further validation of our model by applying it for
solar wind speed prediction and comparing our results with the observa-
tion data and other models. It should be noted that our model is trained

for the four-day advanced prediction, because four days is the average duration for solar wind to propagate
from the source surface to the Earth. The WSA model presented in this paper is also used for the four-day
advanced prediction.

Figure 6 presents a prediction result for 10 years from 2007 to 2016. The year 2016 is a totally out-of-sample
period, which could further demonstrate the generalization ability of our model. As shown in this figure, our
ANN prediction is fairly coincident with the OMNI observation. The WSA modeling result is also shown as a
standard model, which performs well as expected.

The WSA model function used in this study is the following one:

V ¼ Vs þ Vf

1þ f sð Þa1 1� 0:8 exp � θb
a2

	 
a3	 
� �a4
(15)

whereVs ¼ 250 km
s ; Vf ¼ 675 km=s;a1 = 2/9, a2 = 2, and a3 = 1, a4 = 1. It should be noted that these values are

determined according to the GONG magnetogram and PFSS model we have used in this paper. Different
values may be used by other studies (Arge et al., 2003; MacNeice, 2009a; Riley et al., 2015).

Figure 5. (a) The variation of the artificial neural network (ANN) performance
(mean-squared error [MSE]) during the training procedure. The blue,
green, and red lines represent the train, validation, and test sets, respectively.
The green dotted line indicates the best validation performance, and the
black dotted line indicates our training goal. (b) Distribution diagram of the
ANN prediction error for our whole data set from 2007 to 2015. The
horizontal axis is the error value, and the vertical axis is the instance of data
point. The blue, green, and red color represent the training set, validation
set and test set respectively.

10.1029/2018SW001955Space Weather

YANG ET AL. 9



When we zoom into the picture and look the curves more carefully, we can find some better predicted peak
values of the ANN result. For example, there are a lot HSSs faster than 600 km/s predicted by the WSA model
from July 2008 to March 2009, but these HSSs are not really observed as in our model predictions. Figure 7
presents the zoomed-in pictures for four Carrington Rotations (CRs), respectively, from the four phases of
the 24th solar cycle, namely, CR2077 from the minimum phase, CR2110 from the ascending phase, CR2140
from the maximum phase, and CR2178 from the descending phase. We could easily see that our ANN results
are much closer to the observations than the WSA results for these four CRs. These results make sense,
because the WSA model is a fixed function, which might not be suitable for some periods in the whole time
we examined. However, our ANN may have learned how to predict these periods, for it was trained with 85%
of the big data set from 2007 to 2015.

Figure 6. Solar wind speed predictions from our model and the Wang-Sheeley-Arge (WSA) model from 2007 to 2016. The red, blue, and green lines represent the
OMNI observational data, artificial neural network (ANN) modeling result and WSA modeling result.
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Moreover, the accuracy of the optimal ANN can be checked and com-
pared with other models by a Taylor diagram (Taylor, 2001). The
Taylor diagram contains three performance parameters (RMSE, STD,
and R) in one figure and can present results of different models simul-
taneously by showing themwith different markers. Figure 8 is a Taylor
diagram for comparison of the ANN model, WSA model, and a 27-day
persistent model. The black, blue, and magenta axes are stand for
STD, R, and RMSE, respectively. The red round dot is the location of
real observation. The red line represents the observed STD, which is
about 95 km/s. In order to calculate the R and RMSE numbers in
Figure 8, we took the R and RMSE between the red and blue lines
(for ANN) and between the red and green lines (for WSA) from
Figure 6. We can learn from the diagram that the ANN model has a
bigger correlation coefficient and a smaller RMSE than the other
two models. The overall correlation coefficients for the ANN, WSA,
and PS27 model are 0.74, 0.45, and 0.51 respectively. The correspond-
ing RMSEs are about 68, 106, and 95 km/s. However, due to the math-
ematical nature of a regression method, the ANN model has a smaller
STD of 79 km/s compared to the observed STD of 95 km/s. The WSA
STD (~106 km/s) is slightly closer to the STD of the observations than
the ANN, which means that the WSA model does a better job as
estimating the variability of the solar wind speed than the ANN.

Figure 7. Solar wind speed predictions from our model and the Wang-Sheeley-Arge (WSA) model for four Carrington Rotations (CRs), respectively from the
minimum, ascending, maximum, and descending phases of the 24th solar cycle, namely, CR2077 (top left), CR2110 (top right), CR2140 (bottom left), and CR2178
(bottom right). The red, blue, and green lines, respectively, represent the OMNI observational data, artificial neural network (ANN) modeling result, and WSA
modeling result.

Figure 8. Taylor diagram for comparison of three solar wind speed prediction
models. The results of artificial neural network (ANN) model, Wang-Sheeley-Arge
(WSA) model, and a 27-day persistent model are represented by a diamond,
multiple sign, and plus sign, respectively.
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Figure 9. High-speed-enhancement (HSE) validation of our artificial neural network (ANN) model for the years from 2007 to 2016.
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Our results for WSA and PS27 models are reasonably consistent with studies made by others, considering the
differences in these studies, such as the magnetogram sources, the time periods, the time resolutions, and
the empirical formulae. For the WSA model, an RMSE of 94.9 km/s, an STD of 84.3 km/s, and an R of 0.51 were
reported by Owens et al. (2008) for the period from 1995 to 2002; an RMSE of 99.8 km/s and an STD of
69.9 km/s were found by MacNeice (2009b) for the years 1976–2008; the RMSEs of 105 and 91 km/s were
found for the years 2008 and 2011, respectively, by Bussy-Virat and Ridley (2014); and an RMSE of
99.5 km/s, an STD of 70.3 km/s, and an R of 0.35 were reported by Reiss et al. (2016) for 2011 to 2014. For
the PS27 model, an RMSE of 75.4 km/s, an STD of 98.5 km/s, and an R of 0.47 were reported by Owens et al.
(2013) for the period 1995–2003; the RMSEs of 163 and 128 km/s were found for the years 2008 and 2011,

respectively by Bussy-Virat and Ridley (2014); and an RMSE of 100.4 km/s,
an STD of 83.5 km/s, and an R of 0.28 were reported by Reiss et al. (2016)
for the years 2011 to 2014.

For the validation of a solar wind speed prediction model, only error ana-
lysis is not enough. Furthermore, the prediction ability of our ANNmodel is
examined by the high-speed-enhancement (HSE) method (e.g., MacNeice,
2009a; Owens et al., 2005; Reiss et al., 2016). In this paper, an HSE is defined
as a speed increase larger than 100 km/s with a minimum peak speed of
400 km/s. The minimum distance of two HSE peaks is set as two days.
Our HSE validation uses the same method described in detail by Reiss
et al. (2016), except that we replaced the speed increase of 60 km/s in their
HSE definition by 100 km/s in ours. The HSE validation is made by using the
data set of years 2007 to 2016. Our validation results are presented as
large-scale view in Figure 9 for the years from 2007 to 2016 and as
zoomed-in view in Figure 10 for the same four CRs as that in Figure 7.
The prediction horizon is four days, as in Figure 6. The performance results
are shown in Table 1 for the ANNmodel and in Table 2 for the WSAmodel.

Figure 10. High-speed-enhancement (HSE) validation of our artificial neural network (ANN)model andWang-Sheeley-Arge
(WSA) model for four Carrington Rotations (CRs): (a) CR2077, (b) CR2110, (c) CR2140, and (d) CR2178.

Table 1
Comparison of the ANN Predicted and the Observed HSE From 2007 to 2016

Year

ANN
predicted

HSE
Observed

HSE Hit
False
alarm Miss PD PPV TS

2007 38 46 32 6 14 0.70 0.84 0.62
2008 30 41 27 3 14 0.66 0.90 0.61
2009 22 35 18 4 17 0.51 0.82 0.46
2010 32 39 24 8 15 0.62 0.75 0.51
2011 39 46 29 10 17 0.63 0.74 0.52
2012 45 42 27 18 15 0.64 0.60 0.45
2013 43 40 32 11 8 0.80 0.74 0.63
2014 38 40 25 13 15 0.63 0.66 0.47
2015 53 50 38 15 12 0.76 0.72 0.58
2016 57 46 38 19 8 0.83 0.67 0.58
Total 397 425 290 107 135 0.68 0.73 0.55
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Every triangle in Figures 9 and 10 represents an HSE detected from
observation or predicted by the models. In Figure 9, the red color pre-
sents the results from observation and the blue color represents the
results from the ANN model. In Figure 10, the red and blue colors
are consistent with Figure 9 and the green color represents the results
from WSA model. In our HSE analysis, a hit means the predicted HSE
meet the observation, a false alarm means the predicted HSE is not
observed, and a miss means the observed HSE has not been pre-
dicted. The probability of HSE detection (PD) is usually defined as

PD ¼ hits
hitsþmiss

(16)

The PD value of 1 means that all observed peaks are predicted, while
the PD value of 0 means that all peaks are missed. A model could have
a PD of 1 if it predicts a peak every time, so we introduce another
metric named the positive predicted value (PPV) to monitor false
alarms, which is defined as

PPV ¼ hits
hitsþ false alarm

(17)

For example, a PPV of 0.8 means that 80% of the peaks predicted were observed, while 20%were false alarms.
Another parameter for HSE analysis, named the threat score (TS), is a statistical measure of the overall model
performance (Owens et al., 2005). The TS ranges from 0 to 1, which notes a totally no-skill with 0 and a perfect
skill with 1. The TS can be calculated by

TS ¼ hits
hitsþmissþ false alarm

(18)

The statistical results of HSE for every year from 2007 to 2016 are shown in Table 1 for the ANN model and in
Table 2 for the WSA model. For our ANN model, the PD ranges from 0.51 to 0.83 with an average of 0.68, the
PPV ranges from 0.6 to 0.9 with an average of 0.73, and the TS varies from 0.45 to 0.63 with an average of 0.55.
The largest PD is from 2016, and the biggest TS is from 2013. The lowest PD and TS are both from 2009, which
is the year of solar minimum. This may be because the input parameters that we used to train the ANN are not
very suitable for the solar minimum, and it is hard for the ANN to learn how to predict the speed in this period
properly. The PPV of 2009 is higher than most years though, which demonstrates that the ANN has less false
alarms near the solar minimum. However, the model has good results for other years, with PD larger than 0.6.
The results from the descending phase of a solar cycle are better than other phases, such as 2007, 2008, and
2016. This may be because the input characters are more reliable in these periods.

For the WSA model shown in Table 2, the PD ranges from 0.46 to 0.8 with an average of 0.63, the PPV ranges
from 0.42 to 0.71 with an average of 0.57, and the TS varies from 0.3 to 0.56 with an average of 0.43.
Comparing these numbers with the corresponding ones in Table 1, we can conclude that our ANNmodel per-
forms better for predicting HSEs than the WSA model. In previous studies, Owens et al. (2008) reported a PD
of 0.59, a PPV of 0.84, and a TS of 0.51 for the period from 1995 to 2002; MacNeice (2009a) gave a PD of 0.4
and a PPV of 0.61 for the years 1976–2008; and Reiss et al. (2016) reported a PD of 0.37, a PPV of 0.51, and a TS
of 0.28 for the years from 2011 to 2014. The differences of the definition for HSEs may cause the differences in
the performance results.

5. Conclusions

In this paper, we present a HISS model, which applied an ANN with observational and theoretical input, to
predict solar wind speed at 1 AU. The modeling results are validated by both error analysis and event-based
analysis from 2007 to 2016. Our results demonstrate that the HISS model can predict the large-scale solar

Table 2
Comparison of the WSA Predicted and the Observed HSE From 2007 to 2016

Year

WSA
predicted

HSE
Observed

HSE Hit
False
alarm Miss PD PPV TS

2007 45 46 32 13 14 0.70 0.71 0.54
2008 45 41 27 18 14 0.66 0.60 0.46
2009 34 35 16 18 19 0.46 0.47 0.30
2010 39 39 21 18 18 0.54 0.54 0.37
2011 54 46 32 22 14 0.70 0.59 0.47
2012 43 42 23 20 19 0.55 0.54 0.37
2013 44 40 20 24 20 0.50 0.46 0.31
2014 53 40 22 31 18 0.55 0.42 0.31
2015 52 50 36 16 14 0.72 0.69 0.55
2016 57 46 37 20 9 0.80 0.65 0.56
Total 466 425 266 200 159 0.63 0.57 0.43
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wind speed at 1 AU well, with an RMSE of 68 km/s, and a correlation coefficient of 0.74 for year 2007 to 2016.
The HSE analysis shows that our model can predict 68.2% of the observed HSEs.

The comparison with WSA model demonstrates that our model generally performs better than the WSA
model for predicting solar wind speed at 1 AU for a long period. This may illustrate that the input parameters
more than fs and θb in HISS model can be useful to predict solar wind speed. However, which parameter can
cause a better prediction at a specific time needs further study.

The method used in this work is flexible, and it can be adjusted for specific purposes. For example, it can be
applied separately to each of the four phases of the solar cycle, to examine whether or not some distinct dif-
ferences among the phases exist or not. Since the influences of ICMEs might affect the prediction to some
extent, a future work may train the ANN with a data set excluding ICMEs. Furthermore, the method in this
paper can also be used to train ANNs for other parameters, such as temperature (T), density (N), and magnetic
strength (B). Different solar wind parameters at 1 AU have correlation with each other (Yang et al., 2018), so
we may use the same input characters such as fs and θb to predict T, N, and B.

The artificial intelligence techniques have been greatly improved in the last few years, with the explosion of
deep learning. It can be expected that the solar wind prediction will be greatly improved withmore advanced
machine learning techniques and more observational data collected. Therefore, a deep neural network with
many hidden layers may further improve the performance of our work.
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