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Turn on the super-elastic collision 
nature of coronal mass ejections 
through low approaching speed
Fang Shen1, Yuming Wang2,3, Chenglong Shen2,4 & Xueshang Feng1

It has been proved from the observations and numerical simulations that the collision between solar 
coronal mass ejections (CMEs), the largest plasmoids in the heliosphere, could be super-elastic. This 
finding suggests that the CMEs’ magnetic energy and thermal energy could be converted into kinetic 
energy through a more efficient way. However CME collisions are not always super-elastic, which 
means that this distinct property of plasmoids is probably excited conditionally. As the first attempt, 
we carry out a series of three-dimensional numerical experiments, and establish a diagram showing 
the dependence of the collision nature on the CME speed and k-number, the ratio of the CME’s kinetic 
energy to the CME’s total energy. It is found that the super-elastic nature of CMEs appears at the 
relatively low approaching speed, and most of the previous case studies are in agreement with this 
diagram. Our study firmly advances the understanding of the super-elastic property of plasmoids, and 
does give us new clues to deeply understand why and how the magnetic energy and/or thermal energy 
of the colliding plasmoids can be converted into kinetic energy in such an efficient way.

As the largest plasmoid in the heliosphere, coronal mass ejections (CMEs) play extremely important role in space 
physics and space weather. The dynamic process of CMEs is key information for us to evaluate their geoeffec-
tiveness. When two or more CMEs collide, their shape, velocity, and propagation direction may change signifi-
cantly1–12, and the colliding CMEs will probably form the well-known multiple-magnetic-cloud structure, which 
may result in enhanced geoeffectiveness as compared to single CME events13,14.

In 2012, C. Shen et al.12 presented an in-depth analysis of a collision between two CMEs in the heliosphere 
observed by the Solar TErrestrial RElations Observatories (STEREO)15 during 2–8 November 2008. It for the first 
time revealed that the collision of such large plasmoids could be super-elastic, which previously was only found 
in granular physics16–18. The super-elastic process means that the total kinetic energy of the colliding system 
increases after the collision. Soon, F. Shen et al.19 confirmed the result through three-dimensional (3D) MHD 
simulations of the event, and further suggested that the extra kinetic energy gain mainly comes from the mag-
netic energy of the CMEs. However, those simulations only focused on the CMEs similar to those in the 2008 
November event. It is not clear under which conditions the collision between CMEs is super-elastic.

On the other hand, more observational and simulation cases of the CME collisions were studied 
recently6,10,20–22. In their studies, the authors used 1D head-on collision theory to briefly analyze and discuss the 
collision nature. Unfortunately, none of those results supported the super-elastic nature of the CME collision. 
Why is there such a large disparity between the work by C. Shen et al. and those of others? We find that the 
approaching speed of CMEs in most of those cases are much larger than that in C. Shen et al. study. It brings us 
the motivation to invetigate how the CME’s kinematic parameters, e.g., the approaching speed, influence the 
collision nature of plasmoids. Here, we carry out numerical experiments to parametrically study the collision of 
CMEs with different speeds.
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Five test cases
In this work, we focus on the head-on collision of two identical CMEs, which are modeled as magnetized plas-
moids11,23 (refer to the section of ‘Methods’ for details). We first test five cases with different initial speeds of the 
two CMEs, VCME1 and VCME2, which are the average speeds (see ‘Methods’ for explanation) of the CME plasmas. 
We define the difference between them, Δ Vc =  VCME2 −  VCME1, as the approaching speed of the two CMEs. Please 
note that the approaching speed right before the collision is different from Δ Vc defined here, as the CME speed 
will be modified due to the interaction with the ambient solar wind. In these five cases, we fix VCME1 to 200 km s−1 
but choose 200, 400 and 800 km s−1 as Δ Vc for Case 1 to 3, respectively, and fix Δ Vc to 200 km s−1 but set VCME1 
to be 600 and 800 km s−1 for Case 4 and 5, respectively.

We let the two CMEs collide around 20 ±  5 solar radii (RS) by adjusting the separation time of the launches 
of them, and minimize the magnetic reconnection between them by reversing the polarity of one CME. Table 1 
lists the common and different initial parameters of the CMEs for these test cases. In order to ensure that the two 
CMEs fully collide before they reach the outer boundary of the computational domain, we use the different range 
in radial direction for the different cases. The detailed description of our numerical scheme and simulation model 
has been given in the section of ‘Methods’ at the end of this paper.

For each case, we run a non-collision case as a reference case, in which the second CME is ejected into the 
opposite direction to make sure that there is no collision. By comparing the collision and non-collision results, we 
can learn how the energies change and whether the collision is super-elastic, elastic or inelastic.

Figure 1a–e show the energy differences between the collision and non-collision simulation results for all the 
five cases. The dashed horizontal lines indicate the level of numerical error, which is determined by the largest 
difference of total energy, Δ Et, during the simulation interval. As we found before19, the gravitational energy is 
trivial in the CME collision process, because Δ Eg in all the five case is smaller than the numerical error. For all 
the other energies, the differences are significantly larger than the error and thought to be physically meaningful.

We do not know when the collision ends exactly, because the CMEs have become too diffusive to be distin-
guished when they are far away from the Sun. But from Fig. 1, we may find that the kinetic energy difference, 
Δ Ek, usually reaches a minimum value after the contact of two CMEs and then rises back gradually. The later 
increase is probably due to the solar wind that may accelerate the slow CME or the second CME which becomes 
slow after the collision. This phenomenon is clearer for slow cases as revealed in Fig. 1a,f. In the suplementary 
information of C. Shen et al. paper12, it has been shown that the efficiency of the solar wind to change the CME 
speed is much smaller than (about 6.5% of) that of the CME collision. Thus, we think that the collision process 
is almost finished when the solar wind influence on the CME kinematics gets relatively significant. Based on this 
idea, we believe that the collision process is fully covered by the computational domain in our cases, and use the 
minimum value of Δ Ek after the two CMEs beginning to contact to determine the nature of collision as illustrated 
by the diamonds in Fig. 1f. Δ Ekmin >  0 means a super-elastic collision, and Δ Ekmin <  0 an inelastic collision or 
other processes, e.g., a merging process.

From Fig. 1a, we find that the difference of the kinetic energy, Δ Ek, increases to about 1.3 ×  1030 erg in 
3.5 hours since the launch of the second CME, then decreases back to about 1030 erg and slowly returns to about 
1.2 ×  1030 erg. The value of Δ Ekmin is about 1030 erg, which clearly reveals that the collision of the two CMEs is 
super-elastic. Meanwhile, the both magnetic and thermal energies decreases, suggesting that the extra kinetic 
energy gain is converted from them. These results are quite similar to those we obtained in the work of ref. 19, as 
the CME parameters in this case are very close to that.

Figure 1b,c show the energies difference for Case 2 and Case 3. It is found that Δ Ek drops below zero signifi-
cantly in both cases, suggesting an inelastic process. The lost kinetic energy during the collision mostly goes into 
the thermal energy. The collision causes temporary gain of additional magnetic energy. In Case 2, the magnetic 
energy even loses a little bit. Figure 1d,e are similar. After the launch of the second CME, Δ Ek increases first and 
then decreases, but always stays above the line of zero-change, suggesting a super-elastic collision. Different from 
Case 1, the kinetic energy gain in both cases are mostly from the thermal energy.

Direction R B n T Em Ei Eg Vsw

Common par. N11W18
RS × 105 nT × 107 cm−3 × 105 K × 1031 erg km s−1

0.5 1.47 4.0 5.0 1.50 1.37 − 0.64 316 ~ 461

Other par.
Case 1 Case 2 Case 3 Case 4 Case 5

CME1 CME2 CME1 CME2 CME1 CME2 CME1 CME2 CME1 CME2

VCME (km s−1) 200 400 200 600 200 1000 600 800 1000 1200

Ek (× 1031 erg) 0.513 1.83 0.513 3.44 0.513 9.13 3.44 5.96 9.13 12.9

Et (× 1031 erg) 2.74 4.06 2.74 5.67 2.74 11.36 5.67 8.19 11.36 15.13

ts (hours) 7 8 10 4 3

Table 1.  Initial parameters of the CMEs and background solar wind. The top three rows list the common 
initial parameters and the other rows list the different initial parameters. For the common initial parameters, 
from the second column to the right, they are the propagation direction, radius, magnetic field, number density, 
temperature, the magnetic, thermal and gravitational energies, and the background solar wind speed along 
the direction at 18 and 220 RS, respectively. For different initial parameters, from the top to bottom, they are 
the CME’s initial speed, kinetic energy, total energy and the separation time between the launches of the two 
successive CMEs.
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One may notice that the energy difference appears before the collision for some cases. We think that it is 
because the conditions of the background solar wind before the second CME in the collision and non-collision 

Figure 1. Panel (a–e) show the energy differences between the collision and non-collision results for the five 
test cases. The vertical dashed lines in the panels mark the start time of the collisions. The horizontal lines give 
the numerical error. Panel (f) displays how the difference of the kinetic energy changes with VCME2 for the case 
of VCME1 =  300 km s−1. The diamonds indicate Δ Ekmin which we used to determine the collision nature. Panel 
(g) shows the dependence of Δ Ekmin on VCME2.
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cases are not identical. In Case 1, 4 and 5, Δ Ek increases at the beginning of the launch of the second CME. It 
is probably because the second CME needs to consume more kinetic energy to sweep up the slower solar wind 
ahead of it in the non-collision case than that in the collision case, in which the ambient slower solar wind may 
be partially removed by the first CME4. However, in Case 2 and 3, Δ Ek decreases at the beginning. In these two 
cases, the first CME is slower than the background solar wind and the second CME is much faster than the first 
one and the background solar wind. Under this condition, the background solar wind ahead of the second CME 
in the collision cases becomes much more disturbed, in which the second CME might consume more kinetic 
energy, than that in the non-collision cases.

Such a difference in the kinetic energy before the collision is temporary, and may not be considered in the 
identification of the collision nature. This can be seen from a control experiment, Case 3’, in which we exchange 
the launch order of the two CMEs in Case 3 to make sure that the two CMEs cannot collide even if they propagate 
along the same direction. The differences of the energies for Case 3’ are plotted in Fig. 2. It is found that all the 
energy differences vanish before 20 hours. The time of Δ Ek reaching the minimum value is after 20 hours for all 
the cases in our study.

Search the boundary between super-elastic and inelastic
The above analysis has shown that the collision nature clearly depends on the CME speed, and some collisions are 
super-elastic whereas some are inelastic. The boundary between them is elastic collision. Hereafter, we try to seek 
the critical approaching speed, Δ Vc, to produce the elastic collision for different initial speed of CME1, VCME1, of 
200, 300, 400, 500, 600 and 650 km s−1. For any given VCME1, we scan VCME2 with an increasing step of 20 km s−1  
and calculate the differences of energies until Δ Ekmin almost reaches zero, i.e., the elastic collision is obtained.

For example, for the case of VCME1 being 300 km s−1, we make ten numerical tests by changing VCME2 from 
520 km s−1 to 700 km s−1. The color-coded curves in Fig. 1f show the curves of Δ Ek at VCME1 =  300 km s−1 and 
VCME2 =  520, 540, 560, 580, 600, 620, 640, 660, 680 and 700 km s−1. It is clearly shown in Fig. 1g that Δ Ekmin 
monotonously decreases as the approaching speed increases. The collision with the smaller approaching speed 
tends to be super-elastic. When VCME2 =  600 km s−1, i.e., the approaching speed Δ Vc =  300 km s−1, the value of 
Δ Ekmin is almost zero, and we think that this case presents a nearly elastic collision. The uncertainty in Δ Vc is 
+
− km60

40  s−1, which is defined according to the numerical error as denoted by the horizontal dashed lines in 
Fig. 1f,g.

By using this method, we find all the critical approaching speeds for the selected values of VCME1, which are 
280, 300, 310, 340, 400 and 750 km s−1, respectively. The differences of energies for these critical cases are shown 
in Fig. 3a–f. Looking at the energy exchanges after the simulation time t =  15 hours, there is extra magnetic 
energy notably going into thermal energy compared with the non-collision results in the first three critical cases, 
while in the other three critical cases, the extra energy conversion occurs mainly between the magnetic energy 
(critical case d and f) or thermal energy (critical case e) and the gravitational energy. No matter which case is, the 
extra energy exchange at the end of simulation time is about or even less than 5 ×  1029 erg, occupying a very small 
fraction of the CME’s total energy. Figure 3g shows the dependence of the collision nature on the speed. Previous 
Case 1 to 5 are marked on it by black dots for super-elastic collisions and black squares for inelastic collisions. The 
six critical cases are plotted as the open diamonds with the error bars. Apparently these critical points follow an 

exponential function, ∆ = . × +− .V e2 8 10 290c

VCME4 1
45 7 , as denoted by the dotted line, below which the collision 

is super-elastic.
Energy conversion is the fundamental process in a collision, and how much non-kinetic free energy could be 

converted into kinetic energy, we think, is a key factor behind the speed that may influence the collision nature. 
Thus, we investigate the ratio of the CME’s kinetic energy to its total energy, which we define as k-number. It 
measures the balance between the kinetic energy and non-kinetic energies of a CME. A k-number of 0.5 means 
that the CME’s energy is equally partitioned into the kinetic energy and other energies. In our previous numerical 

Figure 2. A control case for Case 3, suggesting that the energy differences caused by the different 
background solar wind ahead of the second CME are temporary. 
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experiments, the k-number varies along with the speed of the CME. According to Table 1, we estimate that the 
value of the k-number increases from less than 0.20 to more than 0.85 as VCME increases from 200 to 1200 km s−1.  
This reflects a change from a non-kinetic-energy dominated CME to a kinetic-energy dominated CME. One can 
see from Fig. 3g that the critical approaching speed increases gradually with the increasing VCME1 if the first CME 
is non-kinetic-energy dominated, and increases quickly when the CME becomes kinetic-energy dominated.

We now investigate what happens if the CME’s k-number is lowered by adding another case of VCME1 =  650 km s−1.  
By increasing the magnetic field strength and temperature, we let k-number of the first CME be about 0.46. This 
number is almost the same as that in the critical case of VCME1 =  400 km s−1, but much smaller than the k-number, 
0.67, in the original case of VCME1 =  650 km s−1. As before, the parameters of the second CME are exactly same 
as the first one except the speed. The numerical experiments suggest that the critical approaching speed is about 
350 km s−1 with the uncertainty of about ± 150 km s−1 as marked by the filled diamond in Fig. 3g. Clearly, it is 
significantly different from the original critical case of VCME1 =  650 km s−1, and also different from the critical 
case of VCME1 =  400 km s−1 though the values of the k-number of their first CMEs are almost the same. This test 
suggests that the critical approaching speed, or the boundary between super-elastic and inelastic, is influenced by 
both CME speed and k-number.

Diagram of the collision nature
To give a complete picture of how the collision nature influenced by the CME’s kinetic parameters. We further 
search the following critical cases: the speed of the first CME is 200, 300, 400, 500 and 650 km s−1, respectively, 

Figure 3. Panel (a–f) show the energy differences for six critical cases, in which the value of Δ Ekmin is almost 
zero. Panel (g) exhibits the five test cases (squares for inelastic and dots for super-elastic) and the critical cases 
(diamonds) in the (VCME1, Δ Vc) space. The dotted line shows the exponential fitting to the open diamonds.
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and the k-number of the first CME is about 0.13, 0.29, 0.46, 0.55 and 0.66, respectively. The critical approaching 
speed can be obtained except for the cases of (VCME1, k) =  (500, 0.29), (500, 0.13) and (650, 0.13). Figure 4a,b show 
the critical approaching speed as a function of the first CME’s speed and k-number, respectively, based on these 
critical cases. For a given VCME1 ≤  400 km s−1, a larger k-number requires a smaller critical approaching speed, 
whereas for a given VCME1 ≥  500 km s−1, the trend is reversed. Further, it could be found that Δ Vc is a linear func-
tion of k for any given VCME1, and roughly follows a parabolic function of VCME1 for any given k. The parabolas 
open up when the k-number is larger than 0.5, and seemingly open down when the k-number is smaller than 0.5.

Based on these facts, we find that these critical cases as well as the critical cases presented in the previous sec-
tion can be well fitted by the function

∆ = ( . − . ) − ( − . ) + ( − ) ( ) ( )−V k V k V k0 026 0 013 18 9 2 2360 1019 km s 1c CME CME1
2

1
1

or

∆ = ( . − + ) − ( . − . + ) ( ) ( )−V V V k V V0 026 18 2360 0 013 9 2 1019 km s 2c CME CME CME CME1
2

1 1
2

1
1

as shown in Fig. 4c. The correlation coefficient between the two sets of Δ Vc is as high as 0.94, and the shadow 
region gives the 3-sigma uncertainty of the fitting. The collision below the shadow region is super-elastic and that 
above the region is inelastic. The fitting curves are also superimposed onto Fig. 4a,b as the dashed lines for com-
parison. It can be found that most data points are generally in agreement with the corresponding fitting curves 
except the green ones in Fig. 4b, implying that 500 km s−1 or so is a very special value for VCME1. From Eq. 2, we 
can find that except VCME1 =  500 km s−1, VCME1 =  170 km s−1 is another special value. Both of them may vanish 
the first term on the right-hand side of Eq. 2. Possible reasons why the two speeds are so special will be discussed 
later in the section of ‘Summary and discussion’. On the other hand, k =  0.5 is also a special value as it makes Eq.1 
reduce from the parabolic function to a linear function. It is clear that this special k-number distinguishes the 
kinetic-energy dominated and the non-kinetic-energy dominated CMEs.

Figure 4d presents the fitting surface of the critical approaching speed in the (VCME1, k) space. It suggests that 
an approaching speed below the surface should cause a super-elastic collision. From this diagram, one may expect 
that it is hard to achieve a super-elastic collision in the three dark regions, in which the critical approaching speed 
is less than 10 km s−1. The upper-right corner seems to be the most favorable region to have a super-elastic colli-
sion though the uncertainty in that region is much more significant than that in other regions.

Figure 4. Panel (a) shows how Δ Vc varies with VCME1. The different colors indicate different values of the 
k-number of the first CME. The dashed lines are the quadratic fittings. Panel (b) shows how Δ Vc varies with 
the k-number of the first CME. The different colors indicate different value of VCME1. The dashed lines are the 
linear fittings. Panel (c) presents the correlation between the critical approaching speeds and their fitting values. 
The shadow region denotes the 3-sigma uncertainty. It is super-elastic below the shadow region, and inelastic 
above the shadow region. Panel (d) shows the surface of the critical approaching speed in the (VCME1, k) space. 
Previously studied events are marked by color-coded symbols in Panel (c,d). The dot for super-elastic and the 
squares for inelastic. The filled symbol means that the event is in agreement with the diagram (Panel d) derived 
from our numerical experiments, and the open symbol means a more or less disagreement.
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Comparison with previous observational and simulation cases
Now we have established the diagram from the numerical experiments to determine if a collision is super-elastic 
or inelastic based on the CME’s initial speed and k-number. For our previously studied observational case12 
(labelled as S12), we may derive the energy densities and the k-number of the first CME along the observational 
path according to the in situ measurements at 1 AU, as shown in Fig. 5d. The average k-number of the CME, 
marked by the shadow region, is therefore estimated to be about 0.96 at 1 AU. Since the established diagram is 
for the parameters at about 2 RS, where the CME initially introduced, we further convert the k-number at 1 AU 
to that at 2 RS, which is about 0.21. The detailed description of how to derive the k-number could be found in the 
section of ‘Methods’. Recall the initial speed of the CME is about 243 km s−1 and the approaching speed is about 
164 km s−1, this case is in agreement with the diagram as indicated by the red dot in Fig. 4c,d.

We further test the diagram with five observational and simulation cases presented by others in the previous lit-
eratures. For convenience, we call them Case T12 (ref. 10), L12 (ref. 6), L13 (ref. 21), T14 (ref. 20) and M15 (ref. 22).  
Except that Case L13 is a simulation case, all the other cases are observational, and particularly three of them 
(T12, L12 and M15) have in situ observations, which suggest that the average k-numbers of the first CMEs are 
about 0.96, 0.86, 0.70, respectively, at 1 AU (see Fig. 5a–c), or about 0.20, 0.07, 0.03 after being converted to the 
values at 2 RS. Since there is no in situ observations of Case T14, we tentatively assume that it has a k-number of 
0.13, the mean value of the above cases. Case L13 actually consists of four numerical simulations of different ori-
entations between two colliding CMEs. Since the speeds of the two CMEs in those simulations are the same, they 
correspond to only one point in our diagram. Also we assume that the k-number of the first CME in Case L13 is 
the mean value, 0.13. All these five cases are marked by color-coded squares in Fig. 4c,d as they were claimed to 
be inelastic collisions. It should be noted that the CMEs’ initial speeds, i.e., the CME speeds at several solar radii 

Figure 5. Energy densities along the observational path derived from the in situ measurements of the Wind 
spacecraft at 1 AU. The k-number is plotted in green lines and scaled by the right vertical axis. The CMEs are 
marked by the shadow regions.
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rather than the speeds right before the collision, of these cases should be used in our diagram. For Case M15, the 
authors did not give the CMEs’ speeds near the Sun, and therefore we roughly estimate them according to Fig. 
6 of their paper. The error bars are calculated by assuming an uncertainty of ± 100 km s−1 in the velocity and an 
uncertainty of ± 50% in the k-number.

It could be found from Fig. 4c that, in all the five independent cases, Case T12 and L13 are in agreement with 
the diagram, Case T14 and Case M15 locate in the shadow region where the determination of the collision nature 
is somewhat ambiguous, and the other case L12 is contrary. Plus our observational case S12, which is consist-
ent with the diagram too, we find that there is only one definitely exceptional case in the six cases. Besides, we 
should note that the comparison between our diagram and these independent cases is preliminary because (1) the 
CMEs’ kinetic parameters in these cases suffer from large uncertainties and (2) some collision conditions, e.g., the 
approaching angle, and collision distance, etc., may differ from those used in our diagram. A more precise revisit 
to those events is worth to be done in a follow-up work.

Summary and Discussion
We have quantitatively studied the influence of the speed and k-number on the CMEs’ collision nature through 
numerical experiments. The derived diagram, Fig. 4d, is particularly useful in roughly estimating the collision 
nature as long as we know the values of the CMEs’ speeds and the k-number, which are all possibly obtainable 
from observations. Concretely speaking, a smaller approaching speed is more favorable for a super-elastic colli-
sion, and there is a surface of the critical approaching speed in the (VCME1, k) space to separate the super-elastic 
and inelastic (including the merging) processes. The critical approaching speed is linearly correlated with the 
k-number and roughly quadratically correlated with the first CME’s speed.

We mentioned before that 500 and 170 km s−1 are two special values of VCME1. From Fig. 4b, we can see that the 
linear correlation between Δ Vc and k-number is positive/negative for the cases of VCME1 above/below 500 km s−1.  
A similar inference could be obtained for VCME1 ≈  170 km s−1 according to Eq. 2. This is probably related to the 
presence or absence of the CME-driven shock. In our simulations, the background solar wind has a speed of 
316–461 km s−1. Considering a fast-mode magnetosonic wave speed of about hundreds kilometers per second 
near the Sun or tens kilometers per second near 1 AU, the condition of a CME to right drive a shock ahead is 
travelling with a speed of about 500 km s−1. Similarly, a reverse shock will appear behind a CME if the CME prop-
agated much slowly, say less than 170 km s−1. If this is ture, the CME-driven shock, no matter where it locates, not 
only significantly changes the dynamics of a CME, but also has influence on the nature of the collision between 
CMEs. The role of shocks played during the CME-CME interaction was discussed in previous studies5. However, 
how the shock changes the interaction process is still far from clear. In this study, we just treat a shock as a part of 
its associated CME, and it will not change the diagram shown in Fig. 4. A deeper analysis about the role of shocks 
might be able to be done through the simulations, but needs more work.

Besides, in this study we ignore many other influence factors, such as the magnetic field reconnection, the 
approaching angle, the collision distance and the background solar wind. As the first kind of this study, how-
ever, it does largely advance our understanding of the dynamic behavior of plasmoids, and shed the light on the 
underlying physical mechanisms of the collisions of plasmoids and the energy exchange/conversion. The most 
important implication here is that that the super-elastic collision nature is probably an intrinsic property of any 
expanding magnetized plasmoids, e.g., CMEs, and could be turned on through a low approaching speed. So 
far we do not explicitly know what the physical mechanism governs the super-elastic process. A rough picture, 
we believe, is that a low approaching speed allows the two colliding CMEs to fully interact, and then the CME 
plasmas can do work efficiently through expansion, during which the magnetic energy and thermal energy are 
converted into kinetic energy.

Methods
Three-dimensional MHD numerical model. The numerical scheme used in this study is a 3D corona 
interplanetary total variation diminishing (COIN-TVD) scheme in a Sun-centered spherical coordinate system 
(r, θ, ϕ) with the r-axis in the ecliptic plane24–27. The computational domain in θ and ϕ directions covers 
− 89° ≤  θ ≤  89° and 0° ≤  ϕ ≤  360°. We use different ranges in the radial direction for the different cases to make 
sure that the collision is fully developed in the computational domain: 1RS ≤  r ≤  100RS in Case 1 and 2, 
1RS ≤  r ≤  150RS in Case 3 and 4, and 1RS ≤  r ≤  220RS in Case 5. The grid size is uniform in the azimuthal direction 
with Δ ϕ =  2°. In order to obtain a better computational resolution, we use non-uniform grids in the radial and 
meridional directions. The radial grids are set as r0 =  1RS, Δ r0 =  s ×  r0, ri =  ri−1 +  Δ ri−1, Δ ri =  s ×  ri, where 
s =  π/200. The meridional grids are set as ∆θ = .  1 00 , θ θ∆ = ∆ = .−



  3 089 89 , with a constant increase in Δ θ 
from θ =  0° to θ =  ± 89°.

To construct a steady background solar wind, we use the potential field extrapolated from the line-of-sight 
of photospheric magnetic field of Carrington rotation 2076 from the Wilcox Solar Observatory (WSO) and the 
Parker’s solar wind solution as the initial magnetic field and velocity, apply the momentum conservation law and 
adiabatic process to obtain the initial density and temperature, and then run our MHD code to reach a steady 
state. The projected characteristic boundary conditions28–30 are adopted at the lower boundary. We use the same 
background solar wind for all the cases simulated in this study.

The CMEs are modeled as high-density, -temperature and -velocity magnetized plasm blobs11,23. In the plasma 
blob model, a CME can be launched with a given propagation velocity, direction, density, temperature, magnetic 
field strength and magnetic polarity. The detailed formulae are given below
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where acme is the radius of the initial plasma blob, a(r,θ,ϕ) denotes the distance from the center of the initial 
plasma blob, ρmax, vmax and Tmax are the maximum density, radial velocity and temperature in the plasma blob, 
respectively, and the magnetic flux function Ψ  is given by

θ ϕ θ ϕ
π
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4
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0

The parameter, VCME, used to characterize the CME speed in the main text is the average value of the velocity of 
the CME plasma, which is approximate 1/3 of vmax. The CME is introduced into the computational domain by 
directly inserting it into the background solar wind medium with its center at r =  2RS as the following
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0
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0

Infer the k-number from in-situ solar wind measurements. We use the measurements of the inter-
planetary magnetic field and solar wind plamsa from Wind spacecraft31,32 to infer the energy density, i.e., the 
energy per unit volume, of the events of interest at 1 AU. Wind spacecraft provides the data of the magnetic field 
strength, B, the speeds of protons and electrons, vp and ve, the number densities of protons and electrons, np and 
ne, and the temperature of protons and electrons, Tp and Te. Based on these parameters, we derive the energy 
densities by using the following formulae
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2

in which mp =  1.67 ×  10−27 kg and me =  9.1 ×  10−31 kg are proton and electron masses, respectively, 
μ =  4π ×  10−7 H m−1 is the permeability of free space, k =  1.38 ×  10−23 J K−1 is the Boltzmann constant, γ =  5/3 is 
the adiabatic index for monoatomic ideal gases, G =  6.67 ×  10−11 m3 s−2 kg−1 is the gravitational constant, 
MS =  1.99 ×  1030 kg is the mass of the Sun, and r is the distance from the solar center. The total energy density, ωt, 
is just the sum of the above energies and the k-number is ω

ω
k

t
. In the study, we use the average value of the k-number 

during the passage of the CME of interest. Here the contribution of minor ions is not considered.
To further infer the value of k-number at 2 RS from the value of the k-number at 1 AU, we assume that (1) the 

density is proportional to r−3, (2) the temperature is proportional to r−1 as the erupted plasma near the Sun is 
typically more than 106 K (ref. 33) and cools down to the order of 105 K at 1 AU, and (3) the speed does not change 
too much compared to the above parameters. Then, we have
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The magnetic energy of a CME decreases by following r−1 when it propagates away from the Sun34,35, thus the 
magnetic energy density follows

ω ∝ ( )−r 8m
4

With these scaling laws, we may infer the value of the k-number at any given distance as long as its value at 1 AU 
is known. It should be noted that the k-number is obtained based on the measurements along the observational 
path, and may not precisely reflect the real k-number of the whole CME, and the scaling laws applied here are 
very simplified. Thus, the inferred k-number is just an approximation of the real k-number, and an uncertainty of 
± 50% is taken into account (see Fig. 4c).

References
1. Reiner, M. J. et al. Constraints on coronal mass ejection dynamics from simultaneous radio and white-light observations. Astrophys. 

J. 590, 533–546 (2003).
2. Farrugia, C. & Berdichevsky, D. Evolutionary signatures in complex ejecta and their driven shocks. Ann. Geophys. 22, 3679–3698 

(2004).
3. Wang, Y., Zheng, H., Wang, S. & Ye, P. MHD simulation of the formation and propagation of multiple magnetic clouds in the 

heliosphere. Astron. & Astrophys. 434, 309–316 (2005).
4. Lugaz, N., Manchester, I., W. B. & Gombosi, T. I. Numerical simulation of the interaction of two coronal mass ejections from Sun to 

Earth. Astrophys. J. 634, 651–662 (2005).
5. Lugaz, N., Vourlidas, A. & Roussev, I. I. Deriving the radial distances of wide coronal mass ejections from elongation measurements 

in the heliosphere application to CME-CME interaction. Ann. Geophys. 27, 3479–3488 (2009).
6. Lugaz, N. et al. The deflection of the two interacting coronal mass ejections of 2010 may 23-24 as revealed by combined in site 

measurements and heliospheric imaging. Astrophys. J. 759, 68(13pp) (2012).
7. Hayashi, K., Zhao, X.-P. & Liu, Y. MHD simulation of two successive interplanetary disturbances driven by cone-model parameters 

in IPS-based solar wind. Geophys. Res. Lett. 33, L20103 (2006).
8. Xiong, M., Zheng, H., Wu, S. T., Wang, Y. & Wang, S. Magnetohydrodynamic simulation of the interaction between two 

interplanetary magnetic clouds and its consequent geoeffectiveness. J. Geophys. Res. 112, A11103 (2007).
9. Wu, C.-C. et al. Three-dimensional global simulation of multiple ICMEs interaction and propagation from the Sun to the 

heliosphere following the 2528 October 2003 solar events. Adv. in Space Res. 40, 1827–1834 (2007).
10. Temmer, M. et al. Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME-CME interaction event. 

Astrophys. J. 749, 57 (2012).
11. Shen, F. et al. Three-dimensional MHD simulation of two coronal mass ejections’ propagation and interaction using a successive 

magnetized plasma blobs model. J. Geophys. Res. 116, A09103 (2011).
12. Shen, C. et al. Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nature Phys. 8, 923–928 (2012).
13. Wang, Y. M., Wang, S. & Ye, P. Z. Multiple magnetic clouds in interplanetary space. Sol. Phys. 211, 333–344 (2002).
14. Wang, Y. M., Ye, P. Z. & Wang, S. Multiple magnetic clouds: Several examples during March - April, 2001. J. Geophys. Res. 108, 1370 

(2003).
15. Kaiser, M. L. et al. The stereo mission: An introduction. Space Sci. Rev. 136, 5–16 (2008).
16. Louge, M. Y. & Adams, M. E. Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an 

elastoplastic plate. Phys. Rev. E 65, 021303 (2002).
17. Kuninaka, H. & Hayakawa, H. Anomalous behavior of the coefficient of normal restitution in oblique impact. Phys. Rev. Lett. 93, 

154301 (2004).
18. Kuninaka, H. & Hayakawa, H. Origin of rebounds with a restitution coefficient larger than unity in nanocluster collisions. Phys. Rev. 

E 86, 051302 (2012).
19. Shen, F., Shen, C., Wang, Y., Feng, X. & Xiang, C. Could the collision of cmes in the heliosphere be super-elastic? validation through 

three-dimensional simulations. Geophys. Res. Lett. 40, 1457–1461 (2013).
20. Temmer, M., Veronig, A. M., Peinhart, V. & Vršnak, B. Asymmetry in the CME-CME interaction process for the events from 2011 

February 14-15. Astrophys. J. 785, 85(7pp) (2014).
21. Lugaz, N., Farrugia, C. J., Manchester, IV, W. B. & Schwadron, N. The interaction of two coronal mass ejections: Influence of relative 

orientation. Astrophys. J. 778, 20(14pp) (2013).
22. Mishra, W., Srivastava, N. & Chakrabarty, D. Evolution and consequences of interacting CMEs of 9-10 November 2012 using 

STEREO/SECCHI and in situ observations. Sol. Phys. 290, 527–552 (2015).
23. Chané, E., Jacobs, C., Van der Holst, B., Poedts, S. & Kimpe, D. On the effect of the initial magnetic polarity and of the background 

wind on the evolution of CME shocks. Astron. & Astrophys. 432, 331–339 (2005).
24. Feng, X., Wu, S. T., Wei, F. & Fan, Q. A class of TVD type combined numerical scheme for MHD equations with a survey about 

numerical methods in solar wind simulations. Space Sci. Rev. 107, 43–53 (2003).
25. Feng, X., Xiang, C., Zhong, D. & Fan, Q. A comparative study on 3-d solar wind structure observed by Ulysses and MHD simulation. 

Chinese Sci. Bull. 50, 672–678 (2005).
26. Shen, F., Feng, X., Wu, S. T. & Xiang, C. Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind 

with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection 
event. J. Geophys. Res. 112, A06109 (2007).

27. Shen, F., Feng, X. & Song, W. B. An asynchronous and parallel time-marching method: application to the three-dimensional MHD 
simulation of the solar wind. Science in china Series E: Technological Sciences 52, 2895–2902 (2009).

28. Wu, S. T. & Wang, J. F. Numerical tests of a modified full implicit eulerian scheme with projected normal characteristic boundary 
conditions for MHD flows. Comput. Methods Appl. Mech. Eng. 24, 267–282 (1987).

29. Hayashi, K. Magnetohydrodynamic simulations of the solar corona and solar wind using a boundary treatment to limit solar wind 
mass flux. Astrophys. J. 161, 480–494 (2005).

30. Wu, S. T., Wang, A. H., Liu, Y. & Hoeksema, J. T. Data driven magnetohydrodynamic model for active region evolution. Astrophys. 
J. 652, 800–811 (2006).

31. Lepping, R. P. et al. The Wind magnetic field investigation. Space Sci. Rev. 71, 207–229 (1995).
32. Ogilvie, K. W. et al. SWE, a comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 71, 55–77 (1995).
33. Ciaravella, A. et al. Physical parameters of the 2000 February 11 coronal mass ejection: Ultraviolet spectra versus white-light images. 

Astrophys. J. 597, 1118–1134 (2003).
34. Kumar, A. & Rust, D. M. Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes. J. Geophys. Res. 101, 

15667–15684 (1996).
35. Wang, Y., Zhou, Z., Shen, C., Liu, R. & Wang, S. Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified 

cylindrical force-free flux rope model. J. Geophys. Res. 120, 1543–1565 (2015).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:19576 | DOI: 10.1038/srep19576

Acknowledgements
We acknowledge the use of the data from Wind spacecraft, and thank the anonymous referees for valuable 
comments. This work is supported by the grants from MOST 973 key project (2012CB825601, 2011CB811403), 
the CAS knowledge innovation program (KZZD-EW-01-4), the NSFC projects (41231068, 41174150, 41274192, 
41474152, 41131065, 41121063, 41574165 and 41274173), the Specialized Research Fund for State Key 
Laboratories and the fundamental research funds for the central universities.

Author Contributions
Y.W. coordinated the study. F.S. and X.F. performed the numerical simulations, C.S., F.S. and Y.W. did the data 
process and analysis. Y.W. and F.S. wrote the paper. All the authors participated in the discussion.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Shen, F. et al. Turn on the super-elastic collision nature of coronal mass ejections 
through low approaching speed. Sci. Rep. 6, 19576; doi: 10.1038/srep19576 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Turn on the super-elastic collision nature of coronal mass ejections through low approaching speed

	Five test cases

	Search the boundary between super-elastic and inelastic

	Diagram of the collision nature

	Comparison with previous observational and simulation cases

	Summary and Discussion

	Methods

	Three-dimensional MHD numerical model. 
	Infer the k-number from in-situ solar wind measurements. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Panel (a–e) show the energy differences between the collision and non-collision results for the five test cases.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ A control case for Case 3, suggesting that the energy differences caused by the different background solar wind ahead of the second CME are temporary.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Panel (a–f) show the energy differences for six critical cases, in which the value of Δ Ekmin is almost zero.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Panel (a) shows how Δ Vc varies with VCME1.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Energy densities along the observational path derived from the in situ measurements of the Wind spacecraft at 1 AU.
	﻿Table 1﻿﻿. ﻿  Initial parameters of the CMEs and background solar wind.



 
    
       
          application/pdf
          
             
                Turn on the super-elastic collision nature of coronal mass ejections through low approaching speed
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19576
            
         
          
             
                Fang Shen
                Yuming Wang
                Chenglong Shen
                Xueshang Feng
            
         
          doi:10.1038/srep19576
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep19576
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep19576
            
         
      
       
          
          
          
             
                doi:10.1038/srep19576
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19576
            
         
          
          
      
       
       
          True
      
   




