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a b s t r a c t 

The magnetohydrodynamics (MHD) modeling of the steady solar wind is an essential and important in- 

gredient in numerical space weather study. Numerically solving the MHD equation system is not an easy 

work due to its complexity by combining the Euler equations of gas dynamics with the Maxwells equa- 

tions of electromagnetics and the solenoidal constraint. Moreover, the vast physical temporal and spatial 

scales of the solar wind simulation propose harsh requirements for computational efficiency and memory 

storage. Considering these factors, we develop an easily implemented finite volume (FV) scheme using the 

GMRES algorithm with an LU-SGS preconditioner for the three-dimensional (3D) MHD-based simulation. 

The steady-state solar wind from 1 R s to 20 R s during Carrington rotation (CR) 2051 is simulated for the 

validation of the proposed matrix-free implicit solver. Compared with the explicit solver, the implicit one 

can effectively enlarge the CFL number to 100 and achieve speedup ratios of 31.27 × and 28.05 × , which 

reduces the computational time for the steady-state study from several days to only a few hours. The 

simulation captures main features of the solar corona and the mapped in-situ solar wind measurements. 

The scheme proposed here provides a promising choice to conduct the 3D MHD simulation of the solar 

wind background from the Sun to the Earth beyond. 

© 2018 Published by Elsevier Ltd. 
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. Introduction 

Numerical space weather modeling has been a promising

ool used for space weather studies in recent decades, among

hich the study of steady solar wind is an essential and impor-

ant ingredient. As the MHD equation system is the only self-

onsistent mathematical description currently used to model large-

cale space weather phenomena, numerical MHD simulations are a

owerful theoretical approach for retrieving the 3D structures and

ynamics of the solar wind in solar-terrestrial space [1] . Mathe-

atically, the ideal MHD equations are a hyperbolic partial differ-

ntial equation (PDE) system by combining the Euler equations of

as dynamics with the Maxwell’s equations of electromagnetics. 

As solar-terrestrial physics phenomena involve vast physical

emporal and spatial scales, efficiencies and computational costs in

he numerical modeling of solar-terrestrial physics phenomena are

mportant considerations in the numerical scheme. In an explicit

ime advance solver, the maximum allowable time step is always a

uch smaller value than that is needed to accurately resolve the
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ransient behavior. The time step is set by the fast wave because

he Courant–Friedrichs–Lewy (CFL) condition associated with the

ast wave places much more restriction than that associated with

he other waves [2] . However, an implicit scheme can remove the

umerically imposed time-step constraint, allowing much larger

ime steps [3] . Generally at each time step or iteration, the implicit

ethod need to solve a linear system of equations that is derived

rom the linearization of an implicit scheme. The most widely used

ethods to solve a linear system are iterative solution methods

nd approximate factorization methods [4] . Some efficient iterative

olution methods have been developed for computational fluid dy-

amics (CFD), such as the generalized minimum residual (GMRES)

ith an incomplete lower-upper (iLU) factorization preconditioner.

ut the requirement of large memory to store the Jacobian matrix

ay prohibit themselves for large-scale problems. The lower-upper

ymmetric Gauss–Seidel (LU-SGS) method was first proposed by

ameson and Yoon [5] for the Euler equations. By making some ap-

roximations to the implicit operator, it can completely eliminate

he storage of the matrix of the equation system in this approx-

mate factorization method. Due to this attractive feature, LU-SGS

as been successfully generalized and extended in many works. For

xample, Sitaraman et al. [6] applied this method to resistive MHD

quations and developed a highly parallelizable matrix-free algo-
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Fig. 1. The sketch of the six-component mesh grid system (left) and six identical 

components with partial overlap (right). 
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rithm on unstructured grids with an analytic form of the convec-

tive flux Jacobian. However, when compared with the most effi-

cient iterative methods such as GMRES with an iLU preconditioner,

this method still converges slowly and is less effective. Luo et al.

[4] gave a fast, matrix-free implicit method, i.e. a GMRES algorithm

with an LU-SGS preconditioner, to solve Navier-Stokes equations,

which combines the efficiency of the iterative methods with low

memory requirement of approximate factorization methods in an

effort. 

Inspired by the above considerations, we develop an easily im-

plemented finite volume (FV) scheme using the GMRES algorithm

with an LU-SGS preconditioner for the MHD-based 3D simulation,

which is an effective and matrix-free implicit time advance solver,

to study the ambient solar wind for CR 2051. This FV scheme is

based on the six-component mesh grid system proposed by Feng

et al. [7] , which consists of six identical component meshes to en-

velope a spherical surface with partial overlap on their boundaries.

The paper is organized as follows. Section 2 presents a brief de-

scription of the model, including both the governing equations and

the grid system. An easily implemented finite volume scheme goes

into details in Section 3 . Then follows the implicit time integra-

tion of the GMRES with an LU-SGS preconditioner in Section 4 .

In Section 5 numerical results of CR2051 are analyzed and com-

pared with the observational results. Finally, conclusions are made

in Section 6 . 

2. Model description 

2.1. Governing equations 

The solar wind evolution is governed by a modified ideal MHD

equations, which is characterized with a solar wind source term

Q solar . The dominance of the magnetic energy density in the solar

corona may incur negative pressure in the course of the simulation.

To mitigate this problem effectively, the split of the magnetic field

B into a time-independent potential magnetic field B 0 and a time-

dependent deviation B 1 (i.e. B = B 0 + B 1 ) is proposed in [7–9] . 

In numerical calculation, the solenoidal constraint ∇ · B = 0 can

only be satisfied up to a discretization error, which will produce a

force parallel to the magnetic field in the conservative form of the

momentum equation causing unphysical effects [10] and result in

failure. To solve this problem, we adopt the eight-wave formula-

tion approach [11] by adding the powell source term S powell to the

right-hand-side of the governing equations to control ∇ · B 1 . It in-

troduces a divergence wave to advect the ∇ · B 1 errors away with

the flow, which can control the ∇ · B 1 errors to the order of trun-

cation error and eliminate the unphysical effects. 

Then the governing equations can be written in brief as: 

∂ t U + ∇ · F = S powell + Q solar , (1)

with 

U = (ρ, ρv , B 1 , e 1 ) 
T , 

F = 

⎛ 

⎜ ⎝ 

ρv 

ρvv + (p + 

B 1 ·B 1 
2 

+ B 1 · B 0 ) I − B 1 B 1 − B 1 B 0 − B 0 B 0 

vB − Bv 

v (e 1 + p + 

B 1 ·B 1 
2 

+ B 1 · B 0 ) − B (v · B 1 ) 

⎞ 

⎟ ⎠ 

, 

S powell = −∇ · B 1 

⎛ 

⎜ ⎝ 

0 

B 

v 
v · B 1 

⎞ 

⎟ ⎠ 
nd 

 solar = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

0 

j 0 × B 0 + ρ[ g − � × (� × r ) ] − 2 ρ� × v + S m 
− ∂B 0 

∂t 

−B 1 · ∂B 0 
∂t 

+ E · j 0 + ρv · [ g − � × (� × r )] + Q e + v · S m 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. 

Here, U is the conservative variables containing the mass density

, the momentum density ρv , the deviation magnetic field B 1 and

he modified total energy density e 1 = ρ v 2 

2 + 

p 
γ −1 + 

B 1 
2 

2 . F is the

ux term. 

As for the solar source term Q solar , r is the position vector orig-

nating at the center of the Sun, and g = −GM/r 3 · r defines the

olar gravitational force at r . ρ , v , p , B, r , t , and g are normal-

zed by the characteristic values ρS , a 0 , ρS a 
2 
0 , 
√ 

ρS a 
2 
0 
, R S , R S /a 0 , and

 

2 
0 
/R S , where ρS , a 0 and R S are the mass density, sound speed

n the solar surface and solar radius. � is the angular speed of

he solar rotation, with | �| = 2 π/ 25 . 38 radian day −1 (here nor-

alized by a 0 / R S ) in the present study. γ is the ratio of spe-

ific heats, and according to Feng et al. [7] we set γ to vary

rom 1.05 to 1.5 along the heliocentric distance r , i.e. γ = 1 . 05 for

 / R S ≤ 5, γ = 1 . 05 + 0 . 03(r/R S − 5) for 5 < r / R S ≤ 20, and γ = 1 . 5 for

 / R S > 20. E = v × B and j 0 = ∇ × B 0 . S m 

and Q e stand for the mo-

entum source term and the volumetric heating function respec-

ively, which are responsible for acceleration and heating of the

olar wind. Taking into account the magnetic field topology effects

12] , we prescribe them as 

 m 

= M 

(
r 

R S 

− 1 

)
exp 

(
− r 

L M 

)
· r /r, 

 e = Q 1 exp 

(
− r 

L Q 1 

)
+ Q 2 

(
r 

R S 

− 1 

)
exp 

(
− r 

L Q 2 

)
. 

etails about those parameters can be referred to Feng et al. [7] . 

.2. Grid system 

We inherit the six-component mesh grid system proposed by

eng et al. [7] , that is composed of six identical component meshes

o envelop a spherical surface with partial overlap on their bound-

ries. The sketch is shown in Fig. 1 . This grid system provides a

oncise and balanced way to distribute computational domains to

arallel computing system, and make it suitable to simulate large-

cale heavy-calculation problems such as the solar wind evolution.

Each component grid is a low-latitude spherical mesh at ( π4 −
≤ θ ≤ 3 π

4 + δ) ∩ ( 3 π4 − δ ≤ φ ≤ 5 π
4 + δ) , where δ is proportion-

lly dependent on the grid spacing entailed for the minimum over-

apping area. Each component is divided in the spherical coordi-

ates with the same procedure. In the θ and φ directions, the par-
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Fig. 2. The neighboring hexahedral cells i and j with the common face A ij . 
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ition reads: 

θj = θmin + j
θ, j = 0 , 1 , · · · , N θ + 1 

� = φmin + � 
φ, � = 0 , 1 , · · · , N φ + 1 

ith 
θ = (θmax − θmin ) / (N θ − 1) and 
φ = (φmax − φmin ) / (N φ −
) . As for the mesh division in the radial direction, Feng

t al. in [7] gave a suggestion for simulations of the solar

ind as: for 1 − 25R s and N φ = N θ = 2 × 2 5 − 1 , 
r(ı ) = 0 . 01R s 

f r (ı) < 1.1R s ; 
r(ı ) = min (A × log 10 (r(ı − 1)) , 
θ × r(ı − 1)) with

 = 0 . 01 / log 10 (1 . 09) if r (ı) < 3.5R s ; and 
r(ı ) = 
θ × r(ı − 1) if

 (ı) ≥ 3.5R s . Parameters like 0.01, 1.09 etc. are chosen so as to make

he cell as rectangular cube as possible, near the Sun. In this way,

ne mitigates this discrete or geometrical stiffness caused by dis-

arate mesh cell widths. Field vectors on each component can be

ransformed to any other components in the Cartesian coordinate.

his transformation can ensure data exchange between six com-

onents, especially when updating the boundary information af-

er calculations at every time step. Details of vector transformation

ormulae are available in [7] . For the convenience of the later im-

licit treatment, we assign every cell in each component an iden-

ity number. For any cell ( ι, j , � ) which is the ιth cell in r direction,

he j th cell in θ direction and the � th cell in φ direction, we spec-

fy its identity number as j ∗ (N θ + 2) ∗ (N φ + 2) + j ∗ (N φ + 2) + � .

n the following statements, we will all use identity numbers to

efer to cells. After the grid mesh partition in the spherical co-

rdinates, we use their corresponding Cartesian ones to form the

orresponding hexahedral cells as shown in Fig. 2 . 

In the following, a numerical implementation of the governing

HD equations on the hexahedral cells will be described in the

artesian coordinate system, under the framework of MPI-parallel

ix-component mesh grid system. 

. Finite volume scheme 

The finite volume form of Eq. (1) on the hexahedral cells in the

ix-component mesh grid system can be written as 

i 

dU i 

dt 
+ 

6 ∑ 

face j =1 

R 

−1 (n i j ) F x 

(
R (n i j ) U iL , R (n i j ) U jR 

)
A i j 


i S powell ( U i , (∇ · B 1 ) i ) + 
i Q solar (U i ) . (2) 

he conservative variable U with subscript i refers to the calculated

ell, whose identity number is i . And the subscript j stands for the

dentity number of cell i ’s neighbor cell. As shown in Fig. 2 , cell

 and cell j share a common interface, and we number it as face j .

bviously, every cell i has six faces and six corresponding neighbor

ells, and thus face j = 1 , 2 , . . . , 6 . For the interface face j of cell i , its

rea is A ij and its outward unit normal vector is n ij pointing from

ell i to cell j. 
i is the volume of cell i . 

F x stands for the numerical flux function in the x direction. U iL 

s the value at the centroid of the interface ij extrapolated from
ell i by reconstruction, while U jR is that from cell j . R is the ro-

ation matrix [13,14] that rotates the x -axis to the direction of n ij 

nd R 

−1 rotates it back. By utilizing rotation matrix, we can con-

ider flux calculations only in the x direction about F x and solve

he equations in a brief and easily implemented way. The flux term

f F x at interface ij is the approximate Riemann problem, of which

 variaty of solvers have been developed during the past dacades.

or simplicity, Lax-Friedrichs method is applied for the presenta-

ion 

 x 

(
R (n i j ) U iL , R (n i j ) U jR 

)
= 

1 

2 

[ 
F x 

(
R (n i j ) U iL 

)
+ F x 

(
R (n i j ) U jR 

)]
− 1 

2 

| λi j | 
(
R (n i j ) U jR − R (n i j ) U iL 

)
. 

(3) 

here λij is the largest eigenvalue of the Jacobian in the normal

irection, taking its value at the interface of cell i and cell j , i.e. 

i j = | v i j · n i j | + 

√ √ √ √ √ 

1 

2 

⎛ 

⎝ 

γ p i j + B 2 
i j 

ρi j 

+ 

√ (
γ p i j + B 2 

i j 

ρi j 

)2 

− 4 
γ p i j B n 

2 
i j 

ρ2 
i j 

⎞ 

⎠ (4)

The subscript ij in Eq. (4) represents the corresponding arithmetic

verage values of U iL and U jR . 

The volume-averaged value of source terms S powell and Q solar is

onsidered as follows. For instance, the volume-averaged value of

 powell in cell I can be expressed by 

 powell = −(∇ · B 1 ) i 

⎛ 

⎜ ⎝ 

0 

B i 

v i 
v i · B 1 

i 

⎞ 

⎟ ⎠ 

ith 

(∇ · B 1 ) i = 

1 


i 

6 ∑ 

face j =1 

(B 1 i j 
· n i j ) A i j , B 1 i j 

= 

(B 1 iL + B 1 jR ) 

2 

bviously, the volume-averaged value S powell is still a function of

 i and U j . For convenience, we denote it as S powell ( U i , ( ∇ · B 1 ) i ). 

.1. Reconstruction 

For the purpose of achieving second spatial accuracy, the lim-

ted linear least squares reconstruction is employed in this scheme,

hich has been successfully applied in many studies [11,15,16] .

enote W 

(k ) 
i 

the k th component of the primitive vector W =
(ρ, v , B 1 , p) T at � x i , and ∇W 

( k ) its gradient at � x i . The general for-

ula for the limited reconstruction is applied on the primitive

ariables on cell i 

 

(k ) 
i 

( � x r ) = W 

(k ) 
i 

+ φ(k ) 
i 

∇W 

(k ) 
i 

· ( � x r − �
 x i ) . (5)

here � x i = (x i , y i , z i ) is the position of cell i ’s centroid, and

 

(k ) 
i 

( � x r ) is the value to be reconstructed at � x r . Here we take � x r 
s the face centroid of cell i . 

As usual, the gradient ∇W 

( k ) at � x r is evaluated by the least-

quare method [11] : 

 

L 1 L 2 L 3 ] · ∇W 

(k ) 
i 

= D w 

, 

ith 

 1 = 

⎛ 

⎝ 

ω ng1 (x ng1 − x i ) 
. . . 

ω ngN (x ngN − x i ) 

⎞ 

⎠ , L 2 = 

⎛ 

⎝ 

ω ng1 (y ng1 − y i ) 
. . . 

ω ngN (y ngN − y i ) 

⎞ 

⎠ , 
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L 3 = 

⎛ 

⎝ 

ω ng1 (z ng1 − z i ) 
. . . 

ω ngN (z ngN − z i ) 

⎞ 

⎠ , D W 

= 

⎛ 

⎜ ⎝ 

ω ng1 (W 

(k ) 
ng1 

− W 

(k ) 
i 

) 

. . . 

ω ngN (W 

(k ) 
ngN 

− W 

(k ) 
i 

) 

⎞ 

⎟ ⎠ 

. 

The subscripts ng 1 ���ngN refer to the neighboring cells of cell i ’s

vertices, and N = 26 for our hexahedral cell. ω ng = 

1 
| � x ng −�

 x i | is the

weighting coefficient. 

In Eq. (5) , φ(k ) 
i 

is the slope limiter. In the present paper, we use

Venkatakrishnan limiter [17] , which is believed to not only produce

monotonic solution without oscillation, but also keep the accuracy

and convergence. As usual, Venkatakrishnan limiter φ(k ) 
i,r 

can be de-

scribed as 

φ(k ) 
i,r 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ψ 

(
W 

(k ) 
i, max 

−W 

(k ) 
i 

∇W 

(k ) 
i 

·( � x r −�
 x i ) 

)
if ∇W 

(k ) 
i 

· ( � x r − �
 x i ) > 0 

ψ 

(
W 

(k ) 
i, min 

−W 

(k ) 
i 

∇W 

(k ) 
i 

·( � x r −�
 x i ) 

)
if ∇W 

(k ) 
i 

· ( � x r − �
 x i ) < 0 

1 if ∇W 

(k ) 
i 

· ( � x r − �
 x i ) = 0 

. 

 

(k ) 
i, max 

= max 

(
W 

(k ) 
i 

, W 

(k ) 
ng1 

, · · ·W 

(k ) 
ngN 

)
and W 

(k ) 
i, min 

=

min 

(
W 

(k ) 
i 

, W 

(k ) 
ng1 

, · · ·W 

(k ) 
ngN 

)
are the maximum and minimum cell

average values among cells ng 1 ���ngN and i . ψ 

(

+ 

−

)
is defined by

the following function 

ψ 

(

+ 

−

)
= 

1 


−

[ (

2 

+ + ε2 
)

− + 2
2 

−
+ 

2 + + 
−
+ + 2
2 − + ε2 

] 

, 

with 
− represents the denominator of the function variable, and


+ the numerator. ε2 = (K
h ) 3 , in which 
h is the local grid size

or characteristic length of the cell V i , and K is a tunable positive

constant. In the present paper, according to [17] , K = 0 . 3 and 
h

is taken to be the diameter of the inscribed circle within the cell.

To prevent division by a very small value, 
− in the term 

1 

− is

replaced by sign (
−)(| 
−| + ω) with ω = 10 −12 in practical im-

plementation. Finally, Venkatakrishnan limiter φ(k ) 
i 

is defined by

φ(k ) 
i 

= min 

(
φ(k ) 

i,r 1 
, · · · , φ(k ) 

i,r 6 

)
. 

4. Implicit time integration 

We rewrite Eq. (2) in a concise form as 


i 

dU i 

dt 
= R i , (6)

with 

R i = F x (U i , U j ) + 
i S powell ( U i , (∇ · B 1 ) i ) + 
i Q solar (U i ) , (7)

where 

F x (U i , U j ) ≡
{ 

−
6 ∑ 

face j =1 

R 

−1 (n i j ) F x 

(
R (n i j ) U iL , R (n i j ) U jR 

)
A i j 

} 

. 

The braced part is denoted by the function F x (U i , U j ) for the con-

venience of the later statement. 

In order to obtain a steady-state solution, Eq. (6) is integrated

in time with backward Euler method as 


i 


U 

n 
i 


t 
= R 

n +1 
i 

(8)

with 
U 

n 
i 

= U 

n +1 
i 

− U 

n 
i 

is the difference of conserved variables be-

tween time levels n and n + 1 , 
t is the time increment, and R i 

is the right-hand side residual and is equal to zero for a steady-

state solution. Linearizing the right-hand side of Eq. (8) in time we

know that 


i 


U 

n 
i 


t 
= R 

n 
i + 

∂R 

n 
i 

∂U 


U 

n 
i , 
hich can be then written in the following compact matrix form

 
U 

n = R 

n , (9)

ith A = 




t 

I − ∂R n 

∂U 
. This linear algebraic equations needs to be

olved simultaneously at each time step. With respect to ∂R 
∂U 

in cell

 , from Eq. (7) we can get 

∂R i 

∂U i 

= 

∂F x (U i , U j ) 

∂U i 

+ 
i 

∂S powell ( U i , (∇ · B 1 ) i ) 

∂U i 

+ 
i 

∂Q solar (U i ) 

∂U i 

, 

(10)

nd 

∂R i 

∂U j 

= 

∂F x (U i , U j ) 

∂U j 

. (11)

ere, the subscript j refers to cell i ’s corresponding neighbor cell. 

To be specific, 
∂F x (U i , U j ) 

∂U i 
in Eq. (10) is 

∂F x (U i , U j ) 

∂U i 

= − 1 

2 

⎧ ⎨ 

⎩ 

6 ∑ 

face j =1 

R 

−1 (n i j ) 
[ ∂F x 

(
R (n i j ) U iL 

)
∂U i 

+ | λi j | I 
] 

A i j 

⎫ ⎬ 

⎭ 

, 

and
∂F x (U i , U j ) 

∂U j 
in Eq. (11) is 

∂F x (U i , U j ) 

∂U j 

= −1 

2 

R 

−1 (n i j ) 

[ 

∂F x 
(
R (n i j ) U jR 

)
∂U j 

− | λi j | I 
] 

A i j . 

t should be noticed here that, λij and ( ∇ · B 1 ) i are functions of

he conservative variables about cells i and j , and should also

e differentiated to obtain the Jacobian matrices of F x (U i , U j )

nd S powell ( U i , ( ∇ · B 1 ) i ) respectively. However, taking true Jaco-

ians is too complex and expensive. Barth in [18] analyzed the

symptotic convergence rates of both the true and the eigenvector

ransformed approximate Jacobian matrices. Test cases in his work

howed that the spectral radius of the approximate Jacobian matrix

as nearly identical with the true one at low CFL numbers, and

as somewhat bigger at high CFL numbers. The performance of

he approximate Jacobian matrix was mildly degraded at high CFL

umbers but was still quite good overall, indicating that the use of

igenvector transformed approximate Jacobian is especially attrac-

ive to construct efficient, accurate implicit methods. And then, ap-

roximate Jacobians were widely adopted in many works [4,6,19] .

ollowing previous experiments, we assume that λij and ( ∇ · B 1 ) i 
re locally constant. Even with general degradation in convergence,

t will take less CPU time to compute the Jacobian matrix, and

he conditioning of the simplified Jacobian matrix can be improved

4,18] , resulting in the reduction of computational cost to solve the

esulting linear system. Virtually, the mismatch and inconsistency

etween the right- and left-hand sides of Eq. (9) , which is caused

y these approximations, do not affect the solution accuracy, for

he steady-state solution to R (U ) = 0 in Eq. (9) is looked for. This

pproximation works reasonably well for the small change in solu-

ion. As pointed out formerly [18,19] , alternative choice may be the

nite difference perturbation for Jacobian calculation. 

.1. LU-SGS Preconditioner 

The LU-SGS method proposed in [5] shows good stability and

ompetitive computational cost in comparison to explicit methods.

he matrix A is split into a strict lower matrix L , a diagonal matrix

, and a strict upper matrix U , i.e. A = D + L + U . Then Eq. (9) can

e written as 

(D + L ) D 

−1 (D + U )
U = R + (LD 

−1 U )
U , (12)
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Fig. 3. Solar coronal holes near the solar surface simulated by the MHD model (left) and observed by the EIT/SOHO (right) for CR 2051. 

Fig. 4. The pB images from 2.3 to 6 R s synthesized from the simulation at the 

meridian planes of φ = 180 ◦ − 0 ◦ (the top left panel) and φ = 270 ◦ − 90 ◦ (the top 

right panel) and observed on December 19, (the middle left panel) and 26 (the 

middle right panel), 2006 from SOHO/LASCO-C2, and the simulated magnetic field 

topologies from 1.0 to 2.6 R s (the bottom panels) on the same meridional planes as 

in Row 1. 
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ith 

 ii = 
i 

[ 
I 


t 
− ∂S powell ( U i , (∇ · B 1 ) i ) 

∂U i 

− ∂Q solar (U i ) 

∂U i 

] 
− ∂F x (U i , U j ) 

∂U i 

, 

 i j = −∂F x (U i , U j ) 

∂U j 

j < i, 

 i j = −∂F x (U i , U j ) 

∂U j 

j > i. 
he equations are approximately factored by neglecting the last

erm on the right-hand side of Eq. (12) , and can be solved in the

wo steps that only involving simple block matrix inversions: 

• Lower (forward) sweep: 

(D + L )
U 

∗ = R . 

• Upper (backward) sweep: 

(D + U )
U = D
U 

∗. 

Finally the system can be solved by: 

U 

∗
i = D 

−1 

⎧ ⎨ 

⎩ 

R −
∑ 

j : j <i 

1 

2 
R 

−1 (n i j ) 

⎡ 

⎣ 

∂F x 

(
R (n i j ) U jR 

)
∂U j 

− | λi j | I 
⎤ 

⎦ A i j 
U 

∗
j 

⎫ ⎬ 

⎭ 

, 

U i = 
U 

∗
i − D 

−1 

⎧ ⎨ 

⎩ 

∑ 

j : j >i 

1 

2 
R 

−1 (n i j ) 

⎡ 

⎣ 

∂F x 

(
R (n i j ) U jR 

)
∂U j 

− | λi j | I 
⎤ 

⎦ A i j 
U j 

⎫ ⎬ 

⎭ 

. 

.2. GMRES algorithm 

GMRES algorithm is the generalization of the conjugate gradi-

nt method proposed by Saad and Schultz [20] for solving a lin-

ar system where the coefficient matrix is not symmetric or posi-

ive definite. GMRES minimizes the norm of the computed residual

ector over the subspace spanned by a certain number of orthog-

nal search directions, and the convergence speed of the iterative

lgorithm depends on the condition number of the coefficient ma-

rix. So the preconditioner that attempts to cluster the eigenvalues

t a single value is the easiest and most common way to improve

he efficiency and robustness of GMRES [4] . GMRES with a LU-SGS

reconditioner for Navier-Stokes equations developed by Luo et al.

4] not only converges effectively but also requires no additional

emory storage by using the Jacobian matrix of the linearized

cheme as a preconditioner matrix. By preconditioning Eq. (9) on

he left, we have 

 

−1 A 
U = P 

−1 R , 

ith the LU-SGS preconditioner defined by P = (D + L ) D 

−1 (D +
) . The preconditioned restarted GMRES(m) is described as

lgorithm 1 . 

. Numerical results 

To validate the capability of the scheme proposed above, we

mploy it to numerically study the ambient solar wind of CR 2051,

hich lasted from December 12, in 2006 to January 7, in 2007

n the descending phase during the solar minimum. The com-

utational domain of the solar wind evolution ranges from the

olar surface to 20 R s . In the computational domain, the time-

ndependent B 0 is a 3D global magnetic field produced by uti-

izing the potential field (PF) model based on the radial photo-

pheric magnetic data from the Global Oscillation Network Group
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Algorithm 1 GMRES with LU-SGS preconditioner. 

Input: 
U 0 , A , R , P 

Output: 
U 0 

1: L 2 last = + ∞ 

2: for itr=1, itr max do ¡¡¡¡

3: v 0 := R − A 
U 0 

4: r 0 := P 

−1 v 0 LU-SGS as the preconditioner 
5: ExchangeBoundary( r 0 ) Through the six-component grid system 

6: β := ‖ r 0 ‖ 2 Initial residual norm 

7: v 1 := r 0 /β
8: for j=1, m do GMRES(m) ¡¡¡¡

9: v 0 := Av j 
10: v j+1 := P 

−1 v 0 LU-SGS as the preconditioner 
11: ExchangeBoundary( v j+1 ) Through the six-component grid system 

12: for i=1, j do Gram-Schmidt step 

13: h i, j := (v j+1 , v i ) 

14: v j+1 := v j+1 − h i, j v i 

15: h j+1 , j := ‖ v j+1 ‖ 2 
16: v j+1 := v j+1 /h j+1 , j 

17: z := min ˆ z ‖ βe 1 − H ̂ z ‖ 2 
18: 
U 0 := 
U 0 + 

∑ m 

i =1 v i z 

19: L 2 = ‖ βe 1 − H z ‖ 2 ¡¡¡¡

20: if L 2 < ε or L 2 > L 2 last then exit Stopping Criterion 

21: L 2 last = L 2 

22: return 
U 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Time costs of the implicit and the explicit solvers. 

Cell number per component Implicit (h) Explicit (h) time ratio (x) 

115 × 42 × 42 1.08 33.77 31.27 

156 × 62 × 62 3.29 92.30 28.05 
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(GONG) program, and the time-dependent magnetic field B 1 is ini-

tially set as zero. The initial distributions of plasma mass density

ρ , pressure p and velocity v are given by Parker’s solar wind flow

[21] . The temperature and number density on the solar surface are

T S = 1 . 3 × 10 6 K and ρS = 1 . 5 × 10 8 cm 

−3 , respectively. 

We take the L 2 norm of the residual as a criterion to check

convergence, and the solution tolerance ε is set to 1 . 0 × 10 −4 . The

maximum allowable number of iterations itr max is set to 20. How-

ever, this criteria is often not reached within the allowable number

of iterations. We found in practice that, the L 2 norm of the resid-

ual declines during the first several iterations, and then it hovers

around some extent. For the purpose of not wasting effort s and

time in extra iterations, we set another stopping criterion for iter-

ations, i.e. when the L 2 norm of the residual is larger than that in

the last iteration. 

Our computing environment is offered by TH-1A supercom-

puter from National Supercomputing Center in TianJin, China. Each

node on TH-1A is equipped with two Intel Xeon X5670@2.93GHz

high-performance processors. Every program employs 120 pro-

cesses and runs on 10 nodes parallelly by utilizing message passing

interface (MPI) for communication. In this section, time cost and

memory storage for the implicit and explicit scheme are compared,

and then the simulated results of steady solar wind for CR 2051 are

presented and compared with observational ones. It should be no-

ticed here that, in the following we present the simulated pictures

from the implicit scheme by default, unless otherwise specified. 

5.1. Time cost and memory storage 

To testify the efficiency of our implicit solver, we make a com-

parison between the implicit and explicit solvers that adopt the

same FV scheme. As the simulation of the ambient solar wind is a

steady problem, we measure the time cost of reaching a basically

steady state, of which the termination criterion of the simulation is

set as 

∣∣∣ ρn +1 −ρn 

ρn 

∣∣∣ ≤ 3 . 9 × 10 −7 . As usual, the CFL number in the ex-

plicit solver is set as 0.5, while the CFL number is enlarged to 100

in the implicit solver. Table 1 presents the time spent for two sam-
led mesh divisions, i.e. 115 × 42 × 42 and 150 × 62 × 62 meshes in

 r, θ , φ) per component. The averages of the time costs are used

or comparison after each program runs 5 times. With the mesh

ivision of 115 × 42 × 42, the explicit solver takes 33.77 h of wall

ime, while the implicit solver costs only about 1.08 hours, with a

peedup ratio of 31.27 × . As for the mesh division of 156 × 62 × 62

n ( r, θ , φ), the implicit solver only takes an average of 3.29 hours

f wall time, which is 28.05x times faster than the explicit one.

he speedup ratio of the 156 × 62 × 62 mesh division is somewhat

maller than that of the 115 × 42 × 42 mesh division. This is be-

ause that with more meshes, the implicit solver costs nonlinearly

ore calculation and time to converge a steady state. Even so,

he speedup with denser mesh is very impressive, by reducing the

ime cost from several days to only a few hours. 

The utilization of the GMRES with an LU-SGS preconditioner

n the implicit solver not only significantly speeds up the conver-

ence, but releases us from storing the large matrix of the equa-

ion system, which is also crucial to large-scale studies. Especially

n our parallel and distributed computation, it is almost imprac-

icable. By using the Jacobian matrix of the linearized scheme as

he preconditioner matrix, LU-SGS preconditioner can be directly

erived from the available flux term without storing the large ma-

rix of the equations. 

.2. Comparisons between the modeled and observational results 

In this part, we make comparisons of the simulated results

ith the available coronal observations and mapped interplanetary

easurements from different perspectives, such as coronal holes,
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Fig. 5. Longitude-latitude maps of the proton number density at 2.5 R s with unit of 10 5 cm 

−3 (the left column) and at 20 R s with unit of 10 3 cm 

−3 (the right column). The 

first and the second rows are maps simulated by the implicit and the explicit solvers, respectively. The black lines in these maps denote the magnetic neutral lines. The third 

row is maps of the relative difference between the proton number densities modeled from the implicit and the explicit solvers. 
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ipolar and unipolar coronal streamers, the HCS and high- and

ow-speed streams. 

Solar coronal holes where the magnetic field lines extend to

he heliosphere are the most easily-recognized signatures that ap-

ear as dark regions in X-ray and EUV images due to reduced

mission from solar plasma localized at open magnetic field foot-

oints [22–25] . Fig. 3 displays the longitude-latitude maps of the

oronal holes near the solar surface simulated by the MHD model

left) and observed by the 195 Åobservations (right) from the Ex-

reme ultraviolet Imaging Telescope (EIT) on board the SOlar and

eliospheric Observatory (SOHO). In the left panel, open-field re-

ions are shaded black while the closed-field regions white. The

pen- and closed-field regions are determined by tracing the mag-

etic field lines from 6 R s back to the photosphere. As for the ob-

erved map, coronal holes are represented by dark color. From both

aps, we can find that the equatorward boundaries of both polar

oronal holes (PCHs) in the simulation almost coincide the obser-

ation. What is more, the shapes and locations of the extending

oles from the southern PCH are well captured by the model. It

s also characterized for the observation of CR 2051 that a band-

haped isolated coronal hole appears in low-latitude region at the

ongitude of around 100 °, which is reproduced in the simulated

ap as well. De Toma [26] and Yang [27] discovered that a sig-

ificant portion of the solar surface was covered with the middle-

nd low-latitude coronal holes in the 20 06–20 09 solar minimum,

nd point out that their presence resulted from the relatively weak

olar magnetic fields in this solar minimum. 

Corresponding to the pattern of open- and closed-field re-

ions near the solar surface, the coronal plasma exhibits non-

niform distribution that can well be qualitatively represented by
he coronal white-light polarized brightness (pB) images produced

y Thomson scattering from free electrons in the coronal plasma

28–30] . In Fig. 4 , we compare the numerical results and the ob-

ervational at the meridian planes to demonstrate that our solver

an achieve the synthesized coronal white-light pB images basi-

ally consistent with the observation. The first row are the pB im-

ges synthesized from the simulated result from 2.3 to 6 R s at

he planes of φ = 180 ◦ − 0 ◦ (left column) and φ = 270 ◦ − 90 ◦ (right

olumn) and the second row are those observed by the Large Angle

nd Spectrometric Coronagraph C2 (LASCO-C2) onboard SOHO with

he same radius range as before. The left coronal picture is taken

t the seventh day of the CR, corresponding to the observation at

he φ = 180 ◦ − 0 ◦ plane while the right one is taken at the four-

eenth day, corresponding to the numerical φ = 270 ◦ − 90 ◦ plane.

oth these observational and numerical pictures show streamers

anging from 2.3 to 6 R s . From the modeled and observed pB im-

ges, we observe that the streamer-like structures do not extend

adially outward from their foot points, but cover relatively larger

atitudes near the Sun [27] . Furthermore, we can find that two

road bright structures extend outward at the east limb and a few

iffusive bright structures covers the west limb for the pB image

n the plane of φ = 180 ◦ − 0 ◦. For the observed and synthesized

B images of the meridian plane of φ = 270 ◦ − 90 ◦, two bright

tructures are captured at the east limb and one brightest and

harpest structure is reproduced at the latitude of 30 °N at the west

imb. Comparing the pB images with the modeled magnetic field

opologies in the third row, we can easily deduce that northeast

tructure at the plane of φ = 180 ◦ − 0 ◦ corresponds to the emis-

ion from the unipolar streamer at the latitude of 25 °N and the

ther bright structures result from bipolar streamers. It should be
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Fig. 6. Longitude-latitude maps of the radial speed at 2.5 R s (the left column) and at 20 R s (the right column) with unit of km s −1 . The first and the second rows are 

maps simulated by the implicit and the explicit solvers, respectively. The black lines in these maps denote the magnetic neutral lines. The third row is maps of the relative 

difference between the radial speeds modeled from the implicit and the explicit solvers. 

Fig. 7. The synoptic map of the white-light polarized brightness at the east limb 

from SOHO/LASCO-C2. 
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noted that the faint structure at the northwest limb of the plane of

φ = 180 ◦ − 0 ◦ comes from the low emission from an isolated coro-

nal hole, which can be inferred from Figs. 5 and 6 . 

It is instructive to validate the capability of the model devel-

oped in the previous sections by comparing the simulated re-

sults from the proposed implicit and explicit solvers. In Fig. 5 ,

we present longitude-latitude maps for the proton number density

from the implicit solver (top panels) and the explicit one (middle

panels) and the relative difference between them at 2.5 R s (bot-

tom left panel) and 20 R s (bottom right panel). The correspond-

ing maps for the radial velocity of plasma flows are displayed in

Fig. 6 . Here the relative differences of the proton density and the

radial velocity are defined as 

∣∣∣ ρim 

−ρex 

ρim 

∣∣∣ and 

∣∣∣V rim 

−V rex 

V rim 

∣∣∣, respectively,

with subscripts “im” and “ex” referring to the implicit and the ex-

plicit solvers. The black line in each panel of the top and mid-

dle rows denotes the magnetic neutral line (MNL), the extension
f which shapes the HCS. The HCS is one of the most important

nterplanetary structures because it separates oppositely directed

agnetic field lines, and various solar wind parameters vary with

he distance from the HCS. From Figs. 5 and 6 , the simulated re-

ults from both the implicit and the explicit solvers show that

he coronal plasma moves faster at a larger heliocentric distance.

oth figures also reveal that the HCS can be described as a two-

ump and two-trough wavy structure, and the high-density low-

peed plasma flow dominates the area in the vicinity of the HCS.

eanwhile, the low-density and high-speed plasma flow pervades

he polar or high-latitude regions. Additionally, we find that there

re very small relative differences between the densities and be-

ween the radial speeds achieved from the implicit and the ex-

licit solvers. For most regions, the relative differences between

he modeled densities are below 0.04 and the relative differences

etween the modeled radial speeds are less than 0.05. 

The white-light polarized brightness at the east limb from

OHO/LASCO C2 at 2.5 R s for CR 2051 are presented in Fig. 7 . By

omparing the longitude-latitude map at 2.5 R s with the synoptic

ap of pB observation, we find that the area near the magnetic

eutral is characteristic of the bright structures. Roughly speaking,

he HCS at 20 R s is similar to the magnetic neutreal line at 2.5 R s ,

hile the magnetic neutral line at 2.5 R s extends a little higher lat-

tude than the HCS at 20 R s . There are subtle differences between

hem by examining carefully. In addition, the first rising slope and

he last falling gradient at 20 R s become more gentle than those at

.5 R s . 

Fig. 8 shows the magnetic filed lines at the meridian plane of

= 180 ◦ − 0 ◦ (top row) and φ = 270 ◦ − 90 ◦ (bottom row). The ra-

ial speed Vr on the left column and the number density N on
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Fig. 8. Magnetic filed lines on the meridian plane of φ = 180 ◦ − 0 ◦ (top panels) and 270 ◦ − 90 ◦ (bottom panels) with the superposed radial bulk speed (unit: km s −1 ) (left 

panels) and the logarithm of the proton number density (unit: cm 

−3 ) to base 10 (right panels) in color contours. 

Fig. 9. Radial profiles of the logarithm of the proton number density (unit: cm 

−3 ) to base 10 (left) and the radial bulk speed with unit of km s −1 (right). The solid line 

denotes the profiles in the HCS region with (θ, φ) = (−29 ◦, 1 ◦) , and the dashed line denotes the profiles in the coronal hole with (θ, φ) = (5 ◦, 8 ◦) . 
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he right column are also superposed in color contours, while the

rrowheads on the black lines represent the directions of the mag-

etic fields. The figure shows the same pattern of the high- and

ow-speed solar wind as Fig. 6 and a helmet streamer stretched by

he solar wind. Between different magnetic polarities forms a thin

urrent sheet. 

To further demonstrate the radial variations of the solar wind

arameters in coronal holes and near the HCS region, we shows

he number density and radial velocity profiles along two radial

ines ranging from 1 R s to 20 R s in Fig. 9 . The solid lines repre-

ent the profiles in the HCS region along the radial line of (θ, φ) =
(−29 ◦, 1 ◦) , while the dashed lines denote the profiles in the coro-

al hole along the radial line of (θ, φ) = (5 ◦, 8 ◦) . The proton num-

er densities in the HCS region and in coronal hole are almost

he same near the solar surface. With the heliocentric distance in-

reasing from 1 R s to 20 R s , the density in the HCS region keeps

igher than that in coronal hole, and the gap between them be-

omes more significant. What’s more, this trend will maintain in
nterplanetary space. The figure demonstrates that the solar wind

peed rises from about 340 km s −1 at 5 R s to about 720 km s −1 

t 20 R s , which is compatible with the previous study on coro-

al observations [31] . Meanwhile, the solar wind speed near the

NL increases from about 140 km s −1 to about 360 km s −1 , which

grees with the conclusion inferred from time-lapse sequences of

hite-light images [32] . 

In order to fill the observational gap near the outer boundary in

ur simulation, we map the in-situ measurements at 1 AU back to

0 R s by using a ballistic approximation [e.g., 27] , which assumes a

lasma parcel travels from 20 R s to the spacecraft with at a speed

easured at 1 AU. The temporal profiles of the radial solar wind

peed and the radial magnetic field polarities at 20 R s are shown

n Fig. 10 with the simulated results denoted by red lines and the

apped observational results of the OMNI data by black lines. We

an easily find that the profiles of the solar wind from both the

imulation and the in-situ observation go with the same trend in

eneral. In the profile of the radial velocity, it is characterized of
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Fig. 10. The simulation (red) and the mapped measurements of the OMNI data (black) at 20 R s are present with Carrington longitudes. The top panel shows the variation of 

the radial speeds (left) with unit of km s −1 , and the magnetic field polarities (right), where “1” stands for the radial magnetic field away from the Sun and “-1” towards the 

Sun. The bottom panel is the variations of the intensities of the radial magnetic fields with unit of nT. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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three high-speed peaks centered at Longitudes 25 °, 100 ° and 260 °
and three low-speed streams centered at Longitudes 60 °, 180 ° and

340 ° in the OMNI data. All of these streamers are captured at pre-

cisely same longitudes by the simulated result. As for the speed

maxima, the high-speed peaks in simulation range between 640

km s −1 and 680 km s −1 , while the low-speed streams flows at

a speed of 350 km s −1 . We also note that the speed of the sim-

ulated stream at Longitude 100 ° is a little lower than the OMNI

data. The polarities of the radial magnetic field is on the right of

the top panel in Fig. 10 . Though there are a few deviations, sectors

of different polarity of the numerical result are generally in agree-

ment with that of the observation. The hit ratio of the simulated

radial magnetic field polarities to the observed ones for CR 2051 is

84.53%. This possibly results from both the error of the simulated

results and the effect of the waves and perturbations in the solar

wind that can lead to the opposite polarity to be measured rather

than the true field polarity [27,33] . To sum up, high- and low-speed

streams are captured by our MHD model, and the observed polari-

ties of the radial magnetic field are mostly reproduced by our sim-

ulation with reasonable accuracy. In the bottom panel of Fig. 10 ,

we also present the longitudinal variations of the radial magnetic

fields at 20 R s achieved from the simulation and the mapped in-

situ measurements without considering the factor of r −2 . If we

take this factor into account, the modeled radial magnetic fields

are only one-third of the corresponding measurements, which is

also present in previous studies [34–37] . Linker [37] attributed the

deficiency of the open magnetic flux to either the underestimation

of the Sun’s magnetic flux by typical observatory maps, or other

sources of open magnetic flux other than the regions that are ob-

viously dark in EUV and X-ray emission. 
. Conclusions 

In this paper, we develop an easily implemented FV scheme

ith the GMRES algorithm and an LU-SGS preconditioner on the

ix-component mesh grid system to solve the MHD equations

overning the solar wind plasma. The implicit and the explicit

olvers of the same FV scheme are implemented and run on the

ame computing cluster by evoking 120 processes. The compar-

sons show that the implicit solver can effectively shorten the time

ost from several days to only a few hours and aquire speedup

atios of 31.27 × and 28.05 × , with two sampled mesh divisions.

esides the significant computational efficiency, the LU-SGS pre-

onditioner does not require any additional memory storage and is

asy to implement on the parallelly distributed cluster. We further

mploy the proposed MHD scheme to simulate the 3D large-scale

tructures of the steady-state solar wind from 1 R s to 20 R s during

R 2051. The simulated results capture many features of the solar

orona. The simulation and the observation achieve similar isolated

ow-latitude coronal holes and almost the same shapes and sizes

f the PCHs. The white-light pB images synthesized from the sim-

lated results and observed by LASCO/SOHO show basically consis-

ent distributions of bright structures. In addition, the radial pro-

les of the solar wind radial bulk speed from 2.6 R s to 20 R s are

onsistent with previous observational studies [31,32] . The simu-

ated results at 20 R s capture the mapped in-situ observations with

easonable accuracy. Therefore the simulation exhibits the poten-

ial capability of numerically modeling the space weather event

rom the Sun to interplanetary space. 

Generally speaking, it is formidable to conduct the real-time 3D

HD simulation for a specified space weather events from the Sun
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o the Earth beyond because the simulation is too time-consuming

nd needs too much computational resources. The significant com-

utational efficiency of the FV scheme with a GMRES algorithm

nd an LU-SGS preconditioner will be a promising choice to com-

lete the tough task after improvements, which will be our future

onsideration in further studies http://omniweb.gsfc.nasa.gov . 
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