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ABSTRACT

We present a new implementation of the MHD relaxation method for reconstruction of the nearly force-free coronal
magnetic field from a photospheric vector magnetogram. A new numerical MHD scheme is proposed to solve
the full MHD equations by using the spacetime conservation-element and solution-element method. The bottom
boundary condition is prescribed in a similar way as in the stress-and-relax method, by changing the transverse field
incrementally to match the magnetogram, and other boundaries of the computational box are set by the nonreflecting
boundary conditions. Applications to the well-known benchmarks for nonlinear force-free-field reconstruction, the
Low & Lou force-free equilibria, validate the method and confirm its capability for future practical application,
with observed magnetograms as inputs.
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1. INTRODUCTION

It is commonly believed that the magnetic field plays an im-
portant role in active solar phenomena: solar flares, coronal mass
ejections, and other solar eruptive activities (Priest & Forbes
2002). The knowledge of three-dimensional (3D) magnetic-field
properties is essential for our understanding of the physical
mechanism of these activities. Unfortunately, the direct mea-
surement of the 3D magnetic field in higher solar atmospheres
is far less precise and sophisticated than in the photosphere. The
currently most common and accurate way of overcoming this
is to extrapolate the magnetic field into the solar chromosphere
and corona, based on an assumed model and using the observed
photospheric magnetic field as a boundary condition. There have
been several techniques developed for the extrapolation of the
magnetic field for this purpose, and most of them adopt the
force-free-field model (McClymont et al. 1997; Schrijver et al.
2006; Wiegelmann 2008). This is a good approximation for the
low corona, because the magnetic field is nearly force-free in
most parts of active regions (Metcalf et al. 1995) because of
low plasma β (β = 2μ0p/B2 � 1) and low plasma velocity
v � vA (Alfvén speed) there, which means that the pressure
gradient, gravity, and inertial force can be neglected.

The force-free field can be described by the equations

∇ × B = αB, ∇ · B = 0, (1)

where B is the magnetic field and α, usually called the force-free
parameter, is a scalar function of space. From Equation (1), one
derives B · ∇α = 0; consequently, in the force-free field, α is
constant along each individual field line but can have different
values on different field lines. If the force-free parameter α is
constant for all field lines, then Equation (1) is linear and we
are dealing with linear, force-free extrapolation. Particularly, the
force-free parameter α = 0 yields a potential field, with no extra
free energy contained to energize eruptive solar activity. Also,
the linear method is inadequate because of its limitation on the
match of most observed magnetograms, because in observations
the force-free parameter α is greatly changed across active
regions (Régnier et al. 2002). It is necessary to go beyond the
linear method and utilize the nonlinear approximation.

Nonlinear extrapolation methods can be generally categorized
into iterative methods and evolutionary methods (Valori et al.
2005). The iterative methods iterate equations to get the best
approximate solutions of Equation (1). One example of iterative
methods is the boundary-integral-equation (BIE) method, first
proposed by Yan & Sakurai (2000) and improved by Yan &
Li (2006), who proposed it as the direct-boundary-integral-
equation (DBIE) formulation. Recently, He & Wang (2008)
followed the main idea of DBIE and devised the upward-
boundary-integration scheme. This method represents the force-
free magnetic field by direct integration of the magnetic field
with the bottom boundary. Other important iterative methods
can be found in Wiegelmann (2008).

The evolutionary methods or the magnetohydrodynamics
(MHD)-relaxation methods (Yang et al. 1986; Mikic & Mc-
Clymont 1994; McClymont & Mikic 1994; Roumeliotis 1996;
McClymont et al. 1997) usually use a potential field as the ini-
tial field and evolve this field into a nonlinear force-free field
(NLFFF). These methods follow the time evolution of the re-
sistive, viscous, MHD equations and allow the boundary con-
ditions to change to match the observed magnetogram. In the
method implemented by Mikic & McClymont (1994), specifi-
cally, a subset of the full MHD equations, the so-called zero-beta
model

ρ
Dv
Dt

= J × B + ∇ · (νρ∇v),

∂A
∂t

= v × B − ηJ (2)

is solved. Here, J = ∇×B, B = ∇×A, and the density ρ may be
fixed as a constant or set as ρ ∝ B2 for a uniform Alfvén speed to
accelerate the evolution of the weak field. The bottom boundary
condition is applied to the magnetic flux Bz and the transverse
electric field Et . The former is adopted from the magnetogram
directly, while the latter is specified in a rather indirect and
complicated way (but possibly suitable for their code). That
is, the electric field Et is artificially made to vary in such a
manner that it can continually drive the normal-current density,
jz, on the boundary toward the desired distribution (deduced
from the magnetogram), and at the same time not alter the
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magnetic flux Bz, according to the normal induction equation
∂Bz

∂t
= −∇ × Et . Eventually, the field approaches the force-

free state, with the bottom boundary matching Bz and jzfrom
the magnetogram. It should be noted that the normal electric-
current density jz is once again indirectly determined from the
magnetogram by taking finite differences in the transverse field
and may be unreliable at many locations, because the measured
transverse field already has large errors (Roumeliotis 1996).

Roumeliotis (1996) introduced another similar evolutionary
method, the so-called stress-and-relax method, which also uses
the same subset of the MHD equations (2) to obtain the final
asymptotic equilibrium, but with simplifications of the momen-
tum equation (using the magnetofrictional assumption, given
below) and the boundary conditions. A new implementation
of the stress-and-relax method was proposed by Valori et al.
(2005), also called the magnetofrictional method, which directly
used the magnetic-induction-field vector B instead of the vector
potential A and utilized an existing MHD code, the Versatile
Advection Code (VAC; Tóth 1996). In this kind of method, the
dissipative term D(v) in the momentum equation

ρ
Dv
Dt

= J × B + D(v) (3)

for relaxation of the system is chosen to be a friction-like force,
as D(v) = −νv (Yang et al. 1986), where ν is a properly given
function of space and time that optimizes relaxation progress.
Then, the momentum equation is further reduced to

v = 1

ν
J × B (4)

by neglecting the inertial term, and thus the only equation
that needs to be solved is the induction equation. The bottom
boundary condition is applied by simply changing the transverse
field incrementally (or in a single-step way) to match the
magnetogram. In such a process, the Lorentz force is injected
from the bottom and stresses the system away from the initial
potential field, and relaxation after the stress step takes the
system to a new equilibrium. An improved implementation of
the magnetofrictional method by Valori et al. (2007) was used
in the reconstruction of force-free equilibria by Low & Lou
(1990). Recently, Valori et al. (2010) extended their code to
the reconstruction of the flux-rope equilibrium from Titov &
Démoulin (1999).

The above methods were all designed for the purpose of
obtaining an “exact” solution to the NLFFF; however, one
should always bear in mind that the force-free field is only
an approximation of the real coronal field, and the “exact”
force-free coronal field does not exist. In this paper, in order
to reconstruct the coronal field in a more general and realistic
condition, we return to the full MHD system (including the gas
pressure and the viscous and resistive terms) to implement the
MHD-relaxation method in a more natural way. The nonzero
pressure is included via a simple adiabatic model of the low-
corona atmosphere, with low β(� 0.01) to mimic the realistic
coronal condition. Modeling such a low β plasma by the full
MHD is a challenge for numerical methods (e.g., a negative
pressure unacceptable for the real physical situation may arise
in many methods; Balsara & Spicer 1999), and this seems
to be one of the reasons for totally discarding the pressure
term in the above-mentioned relaxation methods. Here, a novel
high-resolution and high-performance numerical scheme, the
spacetime conservation-element and solution-element (CESE)

method, is used for solving the full MHD equations (Zhang et al.
2006; Feng et al. 2006, 2007, 2009, 2010). This method is most
suitable for the full set of the governing equations written in
the form of conservation laws, because it differs greatly from
the traditional numerical methods by treating space and time as
one entity. It has a solid foundation in physics and yet offers
simple mathematics and coding. The bottom boundary condition
is given in a similar way as in the stress-and-relax method,
and the other faces of the modeling domain are set to be
nonreflecting. As a first validation of the model, the force-free
equilibria of Low & Lou (1990) will be reconstructed.

The content of the paper is as follows. In Section 2, the method
and its numerical implementation are briefly given. In Section 3,
applications to the extrapolation of Low & Lou (1990)’s test
cases are reported and analyzed. Finally, we summarize and
give some projections for the method in Section 4.

2. THE METHOD

2.1. The CESE–MHD Model

We solve a full system of the MHD model by the CESE
method. The basic governing equations are written in a standard
conservation form, with source terms as follows:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

− ∂Fν

∂x
− ∂Gν

∂y
− ∂Hν

∂z
= S, (5)

where

U = (ρ, ρv, p, B) = (ρ, ρvx, ρvy, ρvz, p, Bx, By, Bz)
T , (6)

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvx

ρv2
x + p0 − B2

x

ρvxvy − BxBy

ρvxvz − BxBz

γpvx

0
vxBy − vyBx

vxBz − vzBx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvy

ρvyvx − ByBx

ρv2
y + p0 − B2

y

ρvyvz − ByBz

γpvy

vyBx − vxBy

0
vyBz − vzBy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρvz

ρvzvx − BzBx

ρvzvy − BzBy

ρv2
z + p0 − B2

z

γpvz

vzBx − vxBz

vzBy − vyBz

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

Fν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
νρ ∂vx

∂x

νρ
∂vy

∂x

νρ
∂vz

∂x

0
μ∇ · B

ηjz

−ηjy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; Gν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
νρ ∂vx

∂y

νρ
∂vy

∂y

νρ
∂vz

∂y

0
−ηjz

μ∇ · B
ηjx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; Hν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
νρ ∂vx

∂z

νρ
∂vy

∂z

νρ
∂vz

∂z

0
ηjy

−ηjx

μ∇ · B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and

(8)

2



The Astrophysical Journal, 727:101 (11pp), 2011 February 1 Jiang et al.

Table 1
Reference Values for Nondimensionalization

Quantity Reference Value

r L0 100 Mm
B B0 10 G
ρ ρ0 = 1 × 109 cm−3mp 1.672 × 10−15 cm−3 g
v vA = B0/

√
μ0ρ0 690 km s−1

t τA = L0/vA 2.4 minutes
p p0 = B2

0 /μ0 0.8 Pa
j j0 = B0/(μ0L0) 8 × 10−4 A
ν L0vA 69 Mm2 s−1

η μ0L0vA 87 Ω Mm

Note. Here, μ0 is the permeability of a vacuum, mp is the proton mass, vA is
the Alfvén speed, and τA is the Alfvén time. 1 Mm = 1 × 106 m.

S = [0, ρg, (γ − 1)v · ∇p + H, 0]T −∇ ·B (0, B, 0, v)T , (9)

with the total pressure p0 = p + (B2
x + B2

y + B2
z )/2. Here,

ρ, v, p, and B are the mass density, plasma velocity, gas
pressure, and magnetic field, respectively. (jx, jy, jz) are the
components of the electric current J. ν is the kinematic plasma
viscosity and η is the electrical resistivity. γ is the ratio of
the specific heats with a value of γ = 1.05, which is usually
employed to simply describe the thermodynamics in the lower
corona instead of using other complicated coronal-heating terms
(Mikić & Linker 1994; Mikić et al. 1999; Hu et al. 2008). r is
the position vector and t is time. The gravity g is a function of z
given by

g(z) = −g0
R2

�
(R� + z)2

ez, (10)

where R� is the solar radius and g0 = 274 m s−2 is the
surface gravity. The heating term from resistivity and viscosity,
H = (γ − 1)(ηj · j + νρ∇v : ∇v), is neglected to describe a
simple adiabatic process (Mikić & Linker 1994; Amari et al.
2003). Such an assumption is reasonable because of the low
values used for the dissipation coefficients η, ν (given below),
and because the evolution of the magnetic field is insensitive to
this heating term.

At the same time, Powell’s source terms −∇ · B(0, B, 0, v)T

are added to deal with the divergence of the magnetic field
(Powell et al. 1999). These terms can advect the magnetic
monopoles (i.e., the error of ∇ · B) with the velocity of the
plasma, and such advection is interpreted as a magnetic-flux
wave in addition to the seven existing wave modes (i.e., an
entropy wave, a pair of Alfvén waves, and two pairs of magneto-
acoustic waves). We also use the diffusive control of ∇ · B
(Marder 1987; Dedner et al. 2002; Tóth et al. 2006) by adding
the term μ∇·B to viscous fluxes Fν, Gν, Hν , which is equivalent
to adding a diffusive source term ∇(μ∇ · B) to the magnetic-
induction equation.

The primitive variables ρ, v, p, B, current density j, position
vector r, time t, viscosity ν, and resistivity η in Equation (5)
have been nondimensionalized by their corresponding reference
values given in Table 1.

The CESE method deals with the 3D governing equations
in a substantially different but general way from the traditional
finite-difference or finite-volume methods. It first defines a four-
dimensional (4D) Euclidean space E4, with (x, y, z) as the first
three coordinates (x1, x2, x3) = (x, y, z) and time as the fourth
one, x4 = t . Using Gauss’ divergence theorem in E4 with the

governing equation (5) gives∮
S(V )

hm · ds =
∫

V

SmdV, (m = 1, 2, 3, . . . , 8), (11)

where hm = (Fm − Fνm,Gm − Gνm,Hm − Hνm,Um) is the
spacetime flux vector, S(V ) is the boundary of the spacetime
region V in E4, and hm ·ds is the spacetime flux exiting through
the surface element ds. Then, the 3D solution volume and time
form a 4D solution volume in the space E4, and this 4D solu-
tion volume is divided into non-overlapping volume elements
that are called conservation elements (CEs). Moreover, the so-
lution elements (SEs) consist of the hyperplanes immediately
associated with the solution point and are introduced to relate
the spacetime flux values on the hypersurfaces of the CEs with
the discretized variables on the solution points. The relationship
is carried out by the first-order Taylor expansion because the
discretized variables contain the first-order spatial derivatives
of Um, i.e., Umx,Umy , and Umz. Applying the spacetime flux
conservation of Equation (11) to the CEs results in simple linear
relationships of the solution variables (the discretized variables)
at two time levels, and the solution is advanced by these rela-
tionships. Detailed derivations and descriptions of the method
for different dimensions can be found in the references cited
in Section 1, especially those for the MHD (Feng et al. 2006,
2007; Jiang et al. 2010).

In addition to Powell’s eight-wave scheme (Powell et al.
1999) and the diffusive-control approach, the Poisson projection
method is also adopted to further eliminate the numerical error
in ∇ · B. Specifically, when it is necessary (i.e., the numerical
∇ · B reaches a given threshold), we solve the Poisson equation
∇2φ = ∇ · B and project the magnetic field to the divergence-
free solution B′ = B − ∇φ after each advancing time step. The
bi-conjugate gradient-stabilized (Bi-CGSTAB) method, which
is a Krylov subspace-type iterative solver, is used to solve the
Poisson equation (Van der Vorst 1992; Tóth 2000).

As is usually done for modeling the local magnetic field, the
computational domain is represented by a 3D rectangular box
in Cartesian coordinates with the bottom boundary on the solar
surface, which is in the x–y plane in our coordinate systems.
For spatial discretization, we use a mesh that is uniform in
the x–y plane, with grid size Δx = Δy, and non-uniform
in the z-direction, with grids concentrated near the bottom
and increasing gradually upward. Moreover, the computational
domain is made moderately larger than the central region of
the field to reduce the side-and-top boundary effects (which
are reduced further by adopting the nonreflecting boundary
conditions (NRBCs) as described in Section 2.3). Because the
magnetic field decreases much more slowly in high altitudes
than in low altitudes, using this non-uniform and half-adaptive
mesh can save significant computational resources without
significantly affecting computational accuracy compared with a
mesh uniform in all directions.

Finally, choosing a proper viscosity is particularly important.
If the viscosity is too strong, the system is difficult to drive,
and the relaxation will cost too much CPU time due to not
only the limited velocity but also the time step restricted by the
Courant–Friedrichs–Lewy (CFL) condition:

Δt < 0.5
Δx2

ν
. (12)

A viscosity that is too small, on the other hand, will lead
to a velocity that is too large (�vA), which may distort the
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field line excessively, change the density profile and pressure
of the plasma significantly, and, even worse, bring numerical
instability to the simulation. For a compromise, we set ν =
0.4Δx2/Δt , where Δt is determined only by the maximum
Alfvén speed B/

√
ρ in the domain with the CFL condition.

In this way, we maximize viscosity without decreasing the
time step. Note that the viscosity is time and space dependent
according to the variables Δx and Δt , and the same value is used
for the coefficient μ in the diffusive term of ∇ ·B. In the present
tests, the resistive term is neglected for modeling the ideal MHD
by setting η = 0.

2.2. Initial Conditions

The computation is initialized with a potential magnetic
field and an isothermal plasma in hydrostatic equilibrium in
the solar gravitational field. The potential field is obtained
by solving Laplace’s equation ∇2φ = 0 with the bottom
boundary condition given by the normal component of the vector
magnetogram, ∂φ

∂z
= Bz. Laplace’s equation is represented by a

large sparse system of linear equations after being discretized
on the grid using a finite difference. These equations are solved
by the same Bi-CGSTAB method that is suitable and efficient
for such large, sparse linear systems. In this way, the derived
field B = ∇φ will fully match the given boundary map,
and the information contained in the map will be preserved.
This is unlike Green’s function method or other eigenfunction
expansion methods that will alter the boundary map because
of truncation terms. To approximate the low β condition, the
plasma is described by the typical values in the low corona, and
the maximum magnetic field on the bottom is set to be ∼100 G,
which is also a typical value. The plasma density on the bottom
ρ0 is assumed to be uniform, with the proton number density
given by n0 = 1 × 109 cm−3 and the initial temperature set to
be T = 0.5 × 106 K. In a hydrostatic equilibrium, the density is

ρ(x, y, z) = ρ0 exp

[
−z

/(
RT (R� + z)

g0R�

)]
, (13)

where R is the gas constant of the plasma and the pressure is
given by p = ρRT . The leading reason for choosing such a
configuration is to maintain the low β condition for the central
region of the computational domain.

2.3. Boundary Conditions

As emphasized by Schrijver et al. (2006), implementation
of the boundary conditions is the most important limitation to
successful field extrapolation. In reality, the field is infinite,
while in the numerical models it is only partly represented
in a finite volume. Thus, a truly “correct” boundary condition
should be characterized by the real field values on the boundary
face. Specifically, in addition to the bottom face, the real vector
field should be used as the boundary condition at the lateral
and top faces (and it is such boundary conditions that make
the best results reported in Schrijver et al. 2006). However,
this information is not available for real magnetograms. For
such case, the so-called NRBCs are frequently used to produce
solutions with the desired behavior (Hedstrom 1979; Thompson
1987; Wu et al. 2001). The NRBCs are designed such that flow
disturbances can propagate out from the computational volume
smoothly without inducing substantial spurious reflections from
the boundary.

In the present work, the lateral and top faces are set by the
NRBCs to minimize the boundary effects for our consideration.

A linear extrapolation may have the nonreflecting effect in
some simple cases (e.g., Valori et al. 2005) but always results
in instability and even crashes in our practice of the full
MHD simulation. In order to implement this type of boundary
condition in a more theory-based or reliable way, we use the
method of projected characteristics, which was originated by
Nakagawa (1981) and implemented by Wu & Wang (1987), and
has been used in dealing with the sub-Alfvénic boundary of the
Extreme-Ultraviolet Imaging Telescope wave simulation, the
data-driven modeling of active-region evolution, and, recently,
the solar corona–solar wind modeling (Wu et al. 2001, 2006,
2009; Hayashi 2005; Hayashi et al. 2006, 2008). The basic
concept of the projected-characteristics method can be described
as follows: (1) the hyperbolic system can be eigendecomposed
into a set of wave equations (i.e., compatibility equations),
each of which specifies one basic wave mode with the path
of the wave called the characteristic; (2) projected in the normal
direction of the boundary, there are waves propagating in and
out of the computational domain because the wave speeds (the
eigenvalues) of both signs generally exist at the boundary; and
(3) the NRBCs allow the outgoing waves to go through the
boundary surface freely without reflection, and no disturbance
will be generated on the surface to affect the interior of the
computational domain, which means no incoming waves will
come from outside. In practice, the compatibility equations
related to the outgoing waves need to be used when updating
the boundary quantities. The incoming waves are eliminated
by keeping their amplitudes constant, as it is the change
in amplitude that indicates a wave. Detailed derivations and
formulae of this method are given in Appendix A.

On the bottom boundary, we fix the density and pressure
and set the constant velocity v = 0. The normal component
of the magnetic field is also unchanged to be identical to
the magnetogram. During the time when the field evolves
from the initial potential state to the near-force-free state
(magnetohydrostatic state in the low β medium), the tangential
field is linearly changed from the initial bottom field to the vector
magnetogram in tens of Alfvén time τA. In this way, the change
rate of the tangential magnetic field at the bottom boundary is
much slower than the Alfvén speed. By changing the bottom
magnetic field, as in the stress-and-relax approach, Lorentz
forces are continuously injected into the computational volume
to drive the system away from the initial equilibrium. Once the
full match of the bottom-vector magnetogram is reached, the
boundary is fixed for the system to relax. When the plasma
flows generated by the driven force are dissipated sufficiently
by the plasma viscosity to a level of |v| � vA, the terms related
to velocity v can be neglected in the momentum equation, after
which only the terms of Lorentz force and pressure are left. As
provided in the low β condition, the final field is regarded as a
force-free state.

3. METHOD VALIDATION

The NLFFF model of Low & Lou (1990), which is a standard
benchmark for NLFFF extrapolation codes, is used to validate
our method. The fields of this model are basically axially
symmetric and can be represented by a second-order partial-
differential equation in spherical coordinates

(1 − cos2 θ )
d2P

d(cos θ )2
+ n(n + 1)P + a2 1 + n

n
P 1+2/n = 0, (14)

4
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(b) MHD(a) Low X
Y Z(c) Pot

Figure 1. CASE I: magnetic-field lines with a contour of Bz on the bottom surface for Low & Lou’s solution (a), the MHD result (b), and the initial potential field (c).
The top row enlarges the central region outlined by the small cube in the bottom row.

where n and a are constants. Then, the magnetic field can be
derived by

Br = 1

r2 sin θ

∂A

∂θ
, Bθ = − 1

r sin θ

∂A

∂r
, Bφ = 1

r sin θ
Q,

(15)
where A = P (cos θ )/rn and Q = aA1+1/n. The solution P
of Equation (14) is uniquely determined by two eigenvalues,
n and its number of nodes m (Low & Lou 1990; Amari et al.
2006). By arbitrarily positioning a plane in the space of the
analytical fields, one obtains a different kind of test case, in
which the plane represents the bottom-boundary condition for
extrapolation of the overlying fields. The position of the plane is
characterized by two additional parameters, l and Φ. Here, we
choose the solutions of test cases in Schrijver et al. (2006), where
six existing methods of NLFFF reconstruction are quantitatively
compared by using Low & Lou’s model. The solutions are given
by n = 1, m = 1, l = 0.3, and Φ = π/4 (CASE I); and n = 3,
m = 1, l = 0.3, and Φ = 4π/5(CASE II), respectively. The
same test solutions were also used in several studies on different
computational methods for the NLFFF (Wheatland et al. 2000;
Amari et al. 2006; Valori et al. 2007; He & Wang 2008). In
this section, a detailed analysis of the modeling of CASE I
is presented, and the results of CASE II are simply reported
afterward.

The computational domain is x, y ∈ [−1, +1] and z ∈ [0, 2]
for both cases. The numerical value of the field is properly scaled
such that the central domain of volume (i.e., x, y ∈ [−0.5, +0.5]
and z ∈ [0, 1]) has low plasma β � 10−2. Obviously, even
after reaching an exact magnetohydrostatic state of v = 0 in
our simulation, the magnetic field cannot be exactly force free
because of finite β in the full MHD modeling. Thus, in theory,

for the central region with the strong field, relative error between
the full MHD result and the exact force-free-field solution is on
the order of 10−2, while for the full volume it will be larger
because of a higher β.

In the present run, for the first 10τA (Alfvén time), the field
in the volume is driven by the bottom vector that is linearly
changed from the potential field to Low & Lou’s solution and
then relaxed to a numerical magnetohydrostatic state for the
following 50τA.

CASE I is first performed on a 128 × 128 × 100 non-uniform
grid. Figure 1 shows the comparison of the MHD result and
Low & Lou’s solution. It also shows the potential field used for
initializing the computation. The field lines shown are traced
from footpoints equally spaced at the bottom surface. In the
central region (top row of the figure), the MHD result is highly
in agreement with Low & Lou’s solution, as can be seen from
the high similarity of most of the field lines. The field lines in
the entire volume (bottom row of the figure) are also similar
but deviate near the top boundary mainly because of the high
β condition. Figure 2 further demonstrates the MHD results
by plotting the values on a chosen straight line. Note that the
profiles of the MHD results and Low & Lou’s solution almost
coincide in the central region.

For a detailed comparison of quantities, a suite of metrics
introduced by Schrijver et al. (2006) is computed. The five
metrics compare either local characteristics, including vector
magnitudes and directions at each point, or global energy
content. They are, respectively, the vector correlation Cvec:

Cvec ≡
∑

i

Bi · bi

/(∑
i

|Bi |2
∑

i

|bi |2
)

, (16)
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Figure 2. CASE I: Bx,By , and Bz along the line of (y = −0.22, z = 0.31) or grid point of (50Δy, 20Δz). Black lines denote Low & Lou’s solution, red lines stand
for the MHD results, and green lines show the potential field.

the metric CCS based on the Cauchy–Schwarz inequality:

CCS ≡ 1

M

∑
i

Bi · bi

|Bi ||bi | , (17)

the normalized and mean vector error E′
n, E′

m:

En ≡
∑

i

|bi − Bi |
/∑

i

|Bi |, E′
n = 1 − En, (18)

Em ≡ 1

M

∑
i

|Bi − bi |
|Bi | ; E′

m = 1 − Em, (19)

and the normalized total energy of the magnetic field:

ε ≡
∑

i |bi |2∑
i |Bi |2 , (20)

where Bi and bi denote Low & Lou’s solution and the numerical
results, respectively; i denotes the indices of the grid points;
and M is the total number of grid points involved. As can be

seen, an exact extrapolation will have all the metrics equal unity
with such definitions, and the closer to unity it is, the better
extrapolation will be, and vice versa. Detailed descriptions for
these metrics can be found in Amari et al. (2006), Schrijver et al.
(2006), and Valori et al. (2007).

The results are given in Table 2 for both the central region
and entire domain. In the central region, the MHD result differs
from Low & Lou’s solution only on the order of 10−3 for the
vector directions, and by ∼6% for the vector norms, which
is consistent with our anticipation because the error is not only
caused by the numerical method but also by finite plasma β. The
relative error should be reduced if the effect of β is removed. For
the same reason, the differences in the entire domain become a
bit larger, but the information about the vector directions is well
preserved.

We also plot the evolution of the metrics to show the process of
the system converging toward the near-force-free state (Figure 3,
left). At the first 10τA, all the metrics evolve at fast rates, as
the system is driven by the Lorentz force injected from the
bottom boundary. Then, after the bottom surface fully matches
the magnetogram (of Low & Lou’s solution), the system begins
to relax and reach a “steady state,” with the metrics slowly
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Figure 3. Evolution of the five metrics for the central region (left) and plasma velocity (right) during time from t = 0 to t = 55τA. Both the maximal velocity vmax

and average velocity vave = 1
M

∑
i |vi | are plotted. Note that the maximal velocity is just about triple the average value at the end time.

Table 2
CASE I: Model Results of the Metrics for the Central

Region and Entire Domain

Model Cvec CCS E′
n E′

m ε

For the central region
Low 1 1 1 1 1
MHD128 1.000 0.998 0.969 0.942 1.005
Potential 0.857 0.854 0.493 0.435 0.788
Wiegelmann∗

64 1.00 1.00 0.97 0.96 1.02
MHD64 1.00 0.99 0.94 0.89 1.02
McTiernan∗

64 1.00 0.99 0.94 0.85 1.01
Valori∗64 1.00 0.98 0.90 0.87 0.98

For the entire domain
Low 1 1 1 1 1
MHD128 0.998 0.935 0.886 0.712 1.009
Potential 0.850 0.805 0.443 0.360 0.753
Wiegelmann∗

64 1.00 1.00 0.98 0.98 1.02
McTiernan∗

64 1.00 0.99 0.92 0.87 1.00
MHD64 1.00 0.93 0.84 0.65 1.03
Valori∗64 0.99 0.68 0.71 0.33 0.98

Notes. Results performed on the 128 × 128 × 100 non-uniform grid are labeled
by the subscript 128. The subscript 64 denotes that the calculation is performed
on a 643 uniform grid, and the superscript ∗ denotes the reported results in
Schrijver et al. (2006).

increasing and stagnating at the end of the simulation. This
steady state is indeed a static equilibrium, as seen from Figure 3
(right). It shows that the magnitude of the residual velocity of
plasma is only several thousandths of the Alfvén speed (vA)
and is on the order of the numerical error O(Δx2) of the CESE
method.

To assess the capability to control the error ∇ · B, two
additional metrics are presented. One is a simple average of
the error in the entire computational volume V ,

EB = 1

V

∑
V

|∇ · B|dV. (21)

The other is introduced to measure the effect caused by ∇ · B
in the numerical computation. Actually, the nonzero ∇ · B or
the magnetic monopole introduces to the system an unphysical

τΑ

0 10 20 30 40 50
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-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

t/

log10(EB)

log10(EF)max

Figure 4. Evolution of the two metrics EB and (EF)max for ∇ · B.

force Funphysical = B∇ · B parallel to the field line (Dellar 2001).
To evaluate the effect of this unphysical force, the ratio of
its magnitude to that of the magnetic-pressure force (i.e., the
magnetic-pressure gradient) is calculated as

EF = |B∇ · B|
|∇(B · B/2)| . (22)

Figure 4 shows the evolution of EB and the maximal EF in
the computational volume. The average error EB first climbs to
a peak of 10−1.8 ≈ 0.015 in the system-driven process (from
time t = 0 to 8τA), and then quickly drops to the value of only
10−2.6 ≈ 0.0025 at 20τA and keeps decreasing to the end of the
simulation time. A similar variation describes the maximal EF,
which is maintained below 0.01during the relaxation process
(t > 15τA). All this means that the evolution of the magnetic
field is affected little by the unphysical force.

For a comparison of the results of the present test and those
reported by Schrijver et al. (2006), we also run the simulation
of CASE I on the same 64 × 64 × 64 uniform grid as used
by Schrijver et al. (2006). Our results and the reported results
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(b) MHD(a) Low X
Y Z(c) Pot

Figure 5. Same as Figure 1, but for CASE II.

in Table 1 of Schrijver et al. (2006) are again presented in
Table 2 in order of decreasing quality of agreement. Here,
only the first three preferable modeling results reported by
Schrijver et al. (2006) are shown, and are calculated using
the optimization method with the weighting function from
Wiegelmann (2004), the optimization method implemented by
McTiernan (Wheatland et al. 2000), and the magnetofrictional
method by Valori et al. (2005), respectively. It shows that our
MHD results in the central region are close to the “best-fit
model” results reported by Wiegelmann and a little better than
McTiernan’s, but a bit worse for the entire domain because the
low β condition is unsatisfied. We note that all the boundaries
(including the side and top faces) are provided with Low &
Lou’s values in their models, while only the lower boundary is
specified in our model. It is also worth noting that our results
are better than those from the similar MHD-relaxation method
used by Valori et al. (2005), especially for the entire domain,
which may be due to the implementation of the NRBCs and the
more natural way of relaxing the stressed state.

The results (magnetic-field lines and the five metrics) for
CASE II on the grid of 128 × 128 × 100 are shown in Figure 5
and Table 3. In this case, the errors for the entire volume
are much larger than those for the central region, as shown
especially by the most sensitive metric, E′

m, and the situation is
more significant than that of CASE I. That is mainly because
the magnetic flux is more concentrated in the interior of the
volume, and because the field decreases much faster away
from the central region in this case than in CASE I. Then,
the corresponding plasma β in the weak-field region will be
higher in CASE II than in CASE I using the same scaling for
the magnetic field and the same initial pressure configuration.
A higher β will introduce a larger error, as we have noted, even
though the results are comparable to the best of those reported
by Schrijver et al. (2006).

Table 3
CASE II: Model Results of the Metrics for the Central

Region and Entire Domain

Model Cvec CCS E′
n E′

m ε

For the central region
Low 1 1 1 1 1
MHD 0.999 0.967 0.915 0.754 1.005
Potential 0.924 0.674 0.572 0.317 0.888

For the entire domain
Low 1 1 1 1 1
MHD 0.999 0.706 0.846 0.166 1.005
Potential 0.922 0.396 0.470 −0.262 0.888

4. CONCLUSIONS

In this paper, the approach of MHD relaxation for the NLFFF
reconstruction is implemented with the CESE–MHD method.
The scheme is conceptually similar to the MHD evolutionary
method of Mikić & Linker (1994) and McClymont et al. (1997),
which solves the resistive and viscous MHD system to achieve
near-force-free equilibrium from an initial state by using the
method of stressing and relaxing. Our improvements include:
(1) the full MHD system is solved, (2) a modern and high-
performance numerical method (CESE) is used, and (3) a
simpler but effective boundary condition is adopted.

In detail, to solve the full MHD equations, the effect of gas
pressure is taken into consideration by initially giving an isother-
mal plasma in hydrostatic equilibrium in solar gravitation. This
is more realistic because the exact NLFFF does not exist. We
face the challenge of modeling the full MHD with an extreme
low β using the CESE method, which is based on an existing
code we have developed for the time-dependent 3D MHD sim-
ulation of problems of the solar–terrestrial system (Feng et al.
2006, 2007, 2010). The bottom-boundary condition, inspired

8
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by the stress-and-relax method, is given by linearly changing
the transverse field from the initial potential field to the mag-
netogram, keeping other quantities fixed. During this process,
Lorentz forces are continuously injected to drive the system. For
the side and top surfaces, the boundary effects are minimized
by the NRBCs based on the projected-characteristics method.

We apply our scheme to reconstruct two well-known, half-
analytic NLFFF solutions by Low & Lou for validation, using
only the corresponding bottom-vector magnetogram. The same
solutions were carried out by most of the present NLFFF
methods, and detailed quantities (the metrics) were reported,
which makes our quantitative comparison with them possible.
Both results of the two cases demonstrate the success of our
reconstructions, and they are comparable with the best of those
reported by Schrijver et al. (2006), even without removing the
error caused by the finite β of the plasma. The evolution of
the metrics and velocity over time also demonstrates that the
system indeed reaches the static equilibrium, and the value
of the residual velocity in the system is only at the level of
the numerical discretization error. Furthermore, the well-known
but annoying error of ∇ · B in the numerical MHD is effectively
reduced by the combination of the CESE method (with Powell’s
source), the diffusive control, and the Poisson projection. As
shown by our introduced metric for ∇ ·B, the effect of this error
is only equivalent to exerting on the plasma an unphysical force
that is weaker than 1% of the magnetic-pressure force. Finally,
no negative pressure was found in the model after checking
solution data after every time step.

In the present reconstructions, the ideal MHD is modeled
without the resistive term, because the magnetic topology of
the field changes little in evolution. A more complex or general
field configuration may require a significant change in topology
(Roumeliotis 1996; Valori et al. 2005), which means resistivity
is needed for reconnection of the field lines. In our model,
this can be readily realized by specifying a proper, nonzero η.
Applications to more complex solutions, such as the Titov &
Démoulin force-free equilibrium (Titov & Démoulin 1999;
Valori et al. 2010), and real solar-vector magnetograms are
planned for our next work.

One great challenge of the NLFFF reconstructions is the lim-
itation of computational resources, especially for the extrap-
olation of currently available high-resolution and large-field-
view magnetograms. At present, a promising avenue is parallel
computing with the adaptive mesh-refinement (AMR) technique
utilized in the grid system. Our code has already been highly
parallelized on the share-memory parallel computer by using
the message-passing-interface library. By overlapping inter-
processor communication with the advancing solution, great
scaling (i.e., parallel speedup) of the code on multiprocessors
(∼256) has been achieved and can be readily used for application
to the large grid (�5123). Also, as the CESE–MHD method has
been realized on the AMR grid system (AMR–CESE–MHD)
with the help of the PARAMESH toolkit (a package for imple-
mentation of the AMR technique on existing code (MacNeice
et al. 2000), we look forward to a significant reduction in com-
puter resources for reconstruction with the magnetogram of the
same size and application to the larger magnetograms by us-
ing the AMR–CESE–MHD code. Moreover, we have recently
extended the CESE–MHD method on more general curvilin-
ear AMR grids, including a spherical grid that can represent
the photosphere more precisely than the rectangular grid (Jiang
et al. 2010). This implementation paves the way for the NLFFF
reconstruction in the spherical-geometry grid, and our future

task is to work on the global-field extrapolation with the full
disk-vector magnetogram available on SDO/HMI.

The work is jointly supported by the National Natural
Science Foundation of China (41031066, 40921063, 40874091,
40890162, 41074122, and 40536029), the 973 project under
grant 2006CB806304, and the Specialized Research Fund for
State Key Laboratories.

APPENDIX A

IMPLEMENTATION OF THE
PROJECTED-CHARACTERISTICS METHOD

To derive the method of projected characteristics, we write
the full 3D MHD equations in the vector-matrix form that is
convenient for eigendecomposition,

∂W
∂t

= −A
∂W
∂x

− B
∂W
∂y

− C
∂W
∂z

+ S, (A1)

where W represents the primary physical quantities: W =
(ρ, vx, vy, vz, p, Bx, By, Bz), and

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vx ρ 0 0 0 0 0 0
0 vx 0 0 1/ρ 0 By/ρ Bz/ρ
0 0 vx 0 0 0 −Bx/ρ 0
0 0 0 vx 0 0 0 −Bx/ρ
0 γp 0 0 vx 0 0 0
0 0 0 0 0 vx 0 0
0 By −Bx 0 0 0 vx 0
0 Bz 0 −Bx 0 0 0 vx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A2)
S contains source terms such as gravity and viscosity.

For the boundary faces of the x-direction, the characteristics
along the projected normal can be found in the x–t plane. For
convenience, Equation (A1) can be written in a more compact
form:

∂W
∂t

= −A
∂W
∂x

+ Sx, (A3)

with Sx containing all the rest of the parts. By eigendecompo-
sition of matrix A (A = RΛL,L = R−1), we have eight sets of
eigenvalue λm and the corresponding left and right eigenvectors
lm, rm, with m = 1, 2, 3, . . . , 8. Here, Λ is the diagonal matrix
whose diagonal elements are the eigenvalues, i.e., Λm,m = λm

and L,R are the square matrices composed by the left and right
eigenvectors, respectively. The eight eigenvalues are the entropy
wave speed λe = vx , the magnetic-flux wave speed λd = vx ,
a pair of Alfvén wave speeds λ±

a = vx ± va , and two pairs
of magneto-acoustic wave speeds λ±

f,s = vx ± vf,s , where va

is the Alfvén speed and vf,s are the magneto-acoustic speeds.
The properly scaled right and left eigenvectors corresponding
to each eigenvalue are given in Appendix B.

Multiplying Equation (A3) by the left eigenvectors lm gives
a set of projected normal-characteristic equations (i.e., compat-
ibility equations)

lm
∂W
∂t

= −λmlm
∂W
∂x

+ lmSx (A4)

that describes each wave mode by the wave speed of λm and the
wave amplitude of lmW.

In the case of the left boundary in the x-direction, for instance,
the projected-characteristic method states that the compatibility
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equation must be used when updating the boundary variables
if the corresponding eigenvalue is negative (i.e., the outgoing
wave). For positive eigenvalues, the nonreflecting conditions
need the right-hand side of Equation (A4) to be zero to
keep the incoming waves unchanged. Then for practical use,
Equation (A4) can be written as

lm
∂W
∂t

= RHSm (A5)

with

RHSm =
{

−λmlm ∂W
∂x

+ lmSx λm < 0,

0 λm � 0.
(A6)

Upwind differences in the normal direction (x-direction here)
and Jacobian matrix-splitting method in the tangential direction
are used to discretize Equation (A6) when needed,

∂W
∂x

= Wn
1,j,k − Wn

0,j,k

Δx
,

Sx = S − 1

Δy

[
B−(Wn

0,j+1,k − Wn
0,j,k

)
− B+

(
Wn

0,j,k − Wn
0,j−1,k

)]
− 1

Δz

[
C−(Wn

0,j,k+1 − Wn
0,j,k

)
− C+

(
Wn

0,j,k − Wn
0,j,k−1

)]
, (A7)

where (i, j, k) is the index for grid points and i = 0 denotes
the left x boundary, while (j, k) visits all mesh points of the
boundary surface. Here, B+, B− are the positive and negative
parts of matrix B, which can be derived by eigendecomposition
of matrix B = RBΛBLB :

B+ = RB

ΛB + |ΛB |
2

LB, B− = RB

ΛB − |ΛB |
2

LB. (A8)

The matrices C+ and C− are defined in the same way. The
reason why we use such types of tangential difference is
the consideration of numerical stability, as the simple central
difference will introduce instability, which we have encountered
in practice.

After that, the temporal variations ∂W
∂t

can be solved by left-
multiplying the full set of Equation (A5):

L
∂W
∂t

= RHS (A9)

by eigenvector matrix R of matrix A :

∂W
∂t

= R(RHS), (A10)

and the advanced variables on the boundary are obtained. In this
way, the advancing-variables formulae are very compact and
neat and ready for coding. The formulae for the other boundaries
can be derived similarly.

APPENDIX B

THE EIGEN SYSTEM OF MATRIX A

λe = u

re = (1, 0, 0, 0, 0, 0, 0, 0)T ,

le = (1, 0, 0, 0,−1/a2, 0, 0, 0); (B1)

λd = u

rd = (0, 0, 0, 0, 0, 1, 0, 0)T ,

ld = (0, 0, 0, 0, 0, 1, 0, 0) ; (B2)

λ±
a = u ± va

r±
a =
(

0, 0,± βz√
2
,∓ βy√

2
, 0, 0,−

√
ρ

2
βzsgnBx,

√
ρ

2
βysgnBx

)T

,

l±a =
(

0, 0,± βz√
2
,∓ βy√

2
, 0, 0,− βz√

2ρ
sgnBx,

βy√
2ρ

sgnBx

)
;

(B3)

λ±
f = u ± vf

r±
f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ραf

±αf vf

∓αsvsβysgnBx

∓αsvsβzsgnBx

αf γp

0
αs

√
ρaβy

αs

√
ρaβz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, l±f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

±αf vf

2a2

∓ αs

2a2 vsβysgnBx

∓ αs

2a2 vsβzsgnBx

αf

2ρa2

0
αs

2
√

ρa
βy

αs

2
√

ρa
βz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

;

(B4)

λ±
s = u ± vs

r±
s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ραs

±αsvs

±αf vf βysgnBx

±αf vf βzsgnBx

αsγp

0
−αf

√
ρaβy

−αf
√

ρaβz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, l±s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

±αsvs

2a2

± αf

2a2 vf βysgnBx

± αf

2a2 vf βzsgnBx

αs

2ρa2

0
− αf

2
√

ρa
βy

− αf

2
√

ρa
βz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

(B5)

where the Alfvén speed is va = |Bx |/√ρ and magneto-acoustic
speeds are given by

vf,s =

√√√√√1

2

⎛
⎝γp + B · B

ρ
±
√(

γp + B · B
ρ

)2

− 4
γpB2

x

ρ2

⎞
⎠.

(B6)
The auxiliary variables are defined as

a =
√

γp

ρ
; α2

f = a2 − c2
s

c2
f − c2

s

; α2
s = c2

f − a2

c2
f − c2

s

,

βy = By√
B2

y + B2
z

; βz = Bz√
B2

y + B2
z

,

and when B2
y + B2

z = 0, βy = βz = 1/
√

2.
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