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课程安排
课程 时间 内容

1 11.05 等离子体的流体近似

2 11.08 磁流体静力学 

3 11.15 等离子体的冻结与磁重联

4 11.22 磁流体力学波

5 11.26 激波与间断面

6 12.06 磁流体动力学不稳定性

7 12.13 习题讲解和答疑

8 12.20 期末考试
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课程材料

空间天气学国家重点实验室网站
spaceweather.ac.cn

人才培养

课程讲义

平时作业+上课 60%

期末考试40%



Hierarchy of  Plasma Models



Fluid Approach

MHD Equations



Fluid Approach (1/2)

➢ The E, B fields are not prescribed but are determined by 

the positions and motions of the charges themselves.

➢ A typical plasma density might be 1012 ion-electron pairs 

per cm3 . If each of these paricles follows a complicated 

trajectory and it is necessary to follow each of these, 

predicting the plasma’s behavior would be a hopeless 

task. 

➢ Fortunately, this is not usually necessary, the majority of 

plasma phenomena observed in real experiments can be 

explained by a rather crude fluid model. 



Fluid Approach

➢ This model is that used in fluid mechanics, in which the 

indentiy of the individual particle is neglected, and only 

the motion of fluid elements is taken into account. Of 

course, the fluid contains electrical charges.

➢ It is surprising that such a model works for plasmas, 

which general have infrequent collisions. The ion and 

electron fluids will interact with each other even in the 

obsense of collisions, because of the E and B fields are 

generated. 



Fluid Eq. of Continuity

Conservation of matter requires that the number of particles (N) in a 

given volume (V)  can only change if there is a net particle flux 

across the surface (S) bounding the Volume (V)

Since this must hold for any volume, it means 
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Fluid Eq. of Motion

A. Neglecting collisions and thermal motion

If neglect collisions and thermal effects, all particles in a 

fluid element move together with average velocity u

d/dt is to be taken at the position of  the fluid element, not 

very convenient. We wish to have equation for fluid 

elements fixed in space.  
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Transform to a fixed frame: (convective derivative) 

In a plasma with the fluid velocity u, we can have:
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B. Including Thermal Effect (Pressure)

Thermal motion  

=➔ the random motion of particles in and 

out of a fluid element 

==➔a pressure force should be added in the 

eq. of motion for a fluid element



( , , )v x x y z y zn v f v v v dv dv =  

v xN n v y z=   

(1) Consider only the x-component of 

motion though faces A and B of the fluid 

element centered at (X0, 1/2dy, 1/2dz ). 

The number of particles per second passing through the 

face A with velocity Vx is 

The number of particles per volume with velocity Vx
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Each particle carries a momentum. The momentum though face A, 

from particles with Vx>0, in the fluid centered  at 
0
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(2) It can be written as:

The factor ½ comes from the fact 

that only half the particles in the 

cube are going toward A. 
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Similarly, the momentum carried out though face B is 
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(3) The net gain in momentum for particles:

This results is doubled by the contribution of left-moving 

particles, since they carry x momentum and also move in the 

opposite direction relative to the gradient.

The total change of momentum of the fluid element at X0 is 

therefore
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(4) Let the velocity of a particle be composed by fluid 

velocity plus random thermal motion. 

For a 1D Maxwillian distribution, 

then 

re-group

Continuity



Add the pressure-gradient force with the 

electromagnetic forces:

[ ( ) ] ( )nm nq
t
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Generalizing to three dimensions, we have 



What we have derived is only a special case: the transfer 

of x momentum by motion in the x direction; and we have 

assumed that the fluid is isotropic, so that the same result 

holds in the y and z directions. 

But it is possible to transfer y momentum by motion in the 

x direction. Suppose that the y-velocities of particles at x0-

Δx and x0+ Δx were a maximum, and

that vy = 0 at x0. Then particles passing through Faces A 

and B would bring more y-momentum into the fluid 

element at x0 than they take out. This would give rise to a 

shear stress on the fluid element at x0, which must be

described in general by a stress tensor, P, The off-diagonal 

elements of P are usually associated with viscosity.



C. Including Collisions

If a neutral gas is present, the  charged fluid can exchange 

momentum with it through collisions. The momentum lost per 

collision will be proportional to the relative velocity between 

the changed fluid and the neutral gas (u-u0), where u0 is the 

velocity of the neutral fluid. If τ , the mean free time between 

collisions, is approximately constant, the resulting force term

can be roughly written as −𝑛𝑚(𝒖 − 𝒖0)/τ or −σ𝑛𝑚(
)

𝒖 −
𝒖0 ,where σ is the collision frequency. 
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(A)When we took the velocity distribution to be 

Maxwellian,  and therefore the averages of 

velocity, we assumed that there were collisions. 

However, the fluid theory is not sensitive to the 

distribution function, as long as we can use the 

same average velocity.

(B) The other reason for the fluid theory to work for 

the plasma is that magnetic field and wave particle 

interaction may play the role as collisions in a 

certain sense. 



Fluid Eq. of State

We use the thermodynamic equation of state to close 

the equations. 

===➔
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Fluid Eq. of State

(1) For isothermal compression: 

(2) Adiabatic compression (T also changes)

(3) More general (adiabatic), γ = (2+N)/N

where N is the number of degrees of freedom, it is 

valid for negligible heat flow. 



➢ A plasma is called isotropic, if its pressure tensor is 

diagonal with all diagonal elements having the same 

value   P= p I 

➢ Particle distribution in a plasma often anisotropic. 

Isotropic plasma and Anisotropic plasma





MultiFluid Equation:
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Maxwell’s Equations
Ampere’s law

Faraday’s law

Poisson’s equation
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Magnetohydrodynamics  (MHD)

➢Description of  plasma   as a multi-fluid system is often 

too complicated.

Simplified  to single fluid  description  (MHD)

Assuming that plasma consists of electrons (me, qe=-e) and 

one component of ions (mi, qi=e)

➢ The MHD model is applicable only when charge

separation (e.g. plasma oscillations or electromagnetic 

waves in plasmas) is negligible. The condition for it is that 

the length scales should be larger than the Debye length and 

the time scales larger than the inverse of plasma frequency. 



Single-Fluid approximation

m e e i in m n m = +

( ) / ( )e e e i i i e e i in m n m n m n m= + +V v v

q e e i in q n q = +

i ep p p= +

Mass density:

Velocity:

Charge density:

Current density:

Total pressure:



𝑚𝑒(𝐶𝑒) + 𝑚𝑖(𝐶𝑖)

Mass Conservation

( ) 0m
m

t





+• =


V

( ) 0e
e e e e

n
m m n

t


+ • =


v ( ) 0i

i i i i

n
m m n

t


+ • =


v

( )
( )

( )
[( ) ]

i i e e
i i i e e e

i i e e i i i e e e
i i e e

i i e e

m n m n
m n m n

t

m n m n m n m n
m n m n

t m n m n

 +
+• +



 + +
= +• +

 +

v v

v v



𝑞𝑒(𝐶𝑒) + 𝑞𝑖(𝐶𝑖)

Charge Conservation
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LHS==➔:   

(1) ignore the contribution of electron momentum (me << mi)

(2) V is approximated as vi

(𝑀𝑒) + (𝑀𝑖)

RHS:====➔

Momentum Eq.
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( Fei = -Fie , so no net friction)
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For simplicity, we treat v as small and neglect the term 𝑣 ∙ 𝛻 𝑣
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Left for excise
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General Ohm‘s Law

electron inertia, 

negligible for low 

enough frequency

Hall term 

~ the resistivity
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General Ohm‘s Law

Last term in J has a coefficient, ignoring me/mi c.f. 1

(σei =      )

The resistivity

Hence dropping electron inertia, Hall term, pressure term, the 

Ohm’s law becomes: 



Equation for the State
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Summary of  MHD  equatons  (I)

Mass Conservation

Charge Conservation

Momentum

Ohm’s Law

Eq.  State
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• Normally, one uses MHD only for low frequency 

phenomena, so the Maxwell displacement  current           

can be ignored in comparison with the conduction 

current. 

• We shall not need Poisson’s equation because that is 

taken care of by quasi-neutrality

• Since the fluid is assumed to be electrically neutral, the 

charge density ρq is taken to  be zero.  



Summary of  MHD Equations  (II)

t


 = −



B
E

0• =B

Ampere's Law 𝛻 × 𝑩 = 𝜇𝑜 𝑱

Faraday’s law

Gauss’s law 𝛻∙ E = 0

In order to obtain a compete and self-consistent description of a 

resistive MHD plasma, the fluid equations and Ohm’s law must 

be combined with Maxwell’s equations: 



Ideal MHD equations

As the collision frequency goes to zero, the condctivity goes to 

infinity: ideal MHD plasma 

0+  =E V B

The fluid velocity component perpendicular to B is then give by 

E x B/ B2 , which is identical to the E x B drift velocity 

encountered in single particle orbit theory.  
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